Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The functional food market has been in a state of constant expansion due to the increasing awareness of the impact of the diet on human health. In the search for new natural resources that could act as a functional ingredient for the food industry, microalgae represent a promising alternative, considering their high nutritional value and biosynthesis of numerous bioactive compounds with reported biological properties. In the present work, the phytochemical profile, antioxidant activity, and enzymatic inhibitory effect aiming at different metabolic disorders (Alzheimer's disease, Type 2 diabetes, and obesity) were evaluated for the species , , , and . All the species presented bioactive diversity and important antioxidant activity, demonstrating the potential to be used as functional ingredients. Particularly, and exhibited higher carotenoid and polyphenol content, which was reflected in their superior biological effects. Moreover, the species exhibited remarkable enzymatic inhibition for all the analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707863PMC
http://dx.doi.org/10.3390/molecules26247593DOI Listing

Publication Analysis

Top Keywords

antioxidant activity
12
potential functional
8
functional ingredient
8
phytochemical profile
8
profile antioxidant
8
enzymatic inhibitory
8
microalgae potential
4
functional
4
ingredient evaluation
4
evaluation phytochemical
4

Similar Publications

Background: This study aimed to develop gluten-free bread from chickpea flour by incorporation of varying levels (0 (B-C), 2.5 (B-1), 5 (B-2), and 10 g kg (B-3)) of madımak leaf powder (MLP), and to investigate its effect on physicochemical and bioactive properties, glycemic index, texture, and sensory attributes.

Results: Moisture ranged from 229 (B-3) to 244 g kg (control), while ash content increased with MLP, reaching 47 g kg in B-3 compared to 15.

View Article and Find Full Text PDF

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.

View Article and Find Full Text PDF