98%
921
2 minutes
20
Wounds can be produced when cells and tissues are subjected to excessive forces, for instance, under pathological conditions or nonphysiological loading. However, the cellular behaviors in the wound formation process are not clear. Here we tested the behaviors of wound formation in the epithelial layer with an in-suit uniaxial stretching device. We found that the wound often nucleates at the position where the cells are dividing. The polarization direction of cells near the wound is preferentially along the wound edge, whereas the cells far from the wound are preferentially perpendicular to the stretching direction. The larger the wound area is, the higher is the aspect ratio of the cells around the wound. Increasing the cell density will strengthen the cell layer. The higher the cell density is, the smaller is the area of the wounds, and the weaker is the effect of stretching on the polarization of the cells. Furthermore, we built a coarse-grained cell model that can explicitly consider the elasticity and viscoelasticity of cells, cell-cell interaction, and cell active stress, by which we simulated the wound formation process and quantitatively analyzed the force and stress fields in the cell layer, particularly around the wound. These analyses reveal the cellular mechanisms of wound formation behaviors in the cell layer under stretching and shed useful light on tissue engineering and regenerative medicine for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790211 | PMC |
http://dx.doi.org/10.1016/j.bpj.2021.12.015 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFJMIR Dermatol
September 2025
College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Road, Parker, CO, 80112, United States, 1 9253236431.
Dermal fillers have gained increasing popularity for their ability to enhance facial symmetry, restore volume, and improve skin texture. However, their use in patients with cancer undergoing active chemotherapy and radiation therapy poses unique challenges, as these treatments can alter both the safety profile and efficacy of filler procedures. Chemotherapy can interfere with normal wound healing and immune responses, warranting a more cautious and individualized approach when considering dermal fillers in this population.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Medical Center of Burn Plastic and Wound Repair, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China. Electronic address:
Skin scar formation is a critical pathological process in wound healing, but its underlying regulatory mechanisms remain incompletely elucidated. By integrating analyses of Bulk-RNA seq and single-cell RNA sequencing (scRNA-seq) data, we identified that ferroptosis-related biological processes potentially play a key role in skin scar formation. Further mechanistic studies demonstrated that in human dermal fibroblast cells, the ferroptosis regulator TIMP metallopeptidase inhibitor 1 (TIMP1) significantly promotes fibroblast differentiation toward a mature phenotype through interactions with cystatin C (CST3), characterized by upregulated expression of myofibroblast differentiation markers such as α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF), along with enhanced cell proliferation and migration abilities.
View Article and Find Full Text PDFSci Prog
September 2025
Department of Neurology, University of Afyonkarahisar Health Sciences, Afyonkarahisar, Türkiye.
A considerable number of individuals are diagnosed with idiopathic trigeminal neuralgia. In order to achieve a more complete understanding of the pathophysiology, it is essential to adopt a range of novel approaches and utilize new animal models. This study investigated changes in the messenger RNA (mRNA) expression of ion-channels in a newly developed animal model of trigeminal neuropathic pain induced by cervical spinal dorsal horn compression.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Medical Sciences, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.
View Article and Find Full Text PDF