98%
921
2 minutes
20
There is a strong need to develop and implement appropriate alternatives to replace formaldehyde-based adhesive systems, such as phenol-formaldehyde, in the industry of wood-based panels (WBPs). This is due to the toxicity and volatility of formaldehyde and restrictions on its use associated with some formaldehyde-based adhesives. Additionally, the current pressure to reduce the dependence on polymeric materials, including adhesives, from petrochemical-based sources has led to increased interest in bio-based adhesives, which, in some cases, already provide acceptable properties to the end-product. Among the potential raw materials for good-quality, renewable-based adhesive formulations, this paper highlights tannins, lignin, and protein sources. However, regarding renewable sources, specific features must be considered, such as their lower reactivity than certain petrochemical-based sources and, therefore, higher production costs, resource availability issues, and the need for toxicological investigations on alternative systems, to compare them to conventional systems. As a result, further research is highly encouraged to develop viable formaldehyde-free adhesive systems based on renewable sources, either at the technical or economical level. Moreover, herein, we also showcase the present market of WBPs, highlighting the obstacles that the alternative and new bio-based adhesives must overcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658755 | PMC |
http://dx.doi.org/10.3390/polym13234086 | DOI Listing |
Int J Biol Macromol
September 2025
Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China. Electronic address:
Chitosan and tannin are both promising renewable materials for food packaging; however, their effectiveness is limited by incomplete interactions between them. Therefore, phytic acid and octadecylamine were employed to create chitosan-tannin-phytic acid-octadecylamine (CTPO) films that are flame-retardant, UV-resistant, antibacterial and hydrophobic for food packaging applications. The findings indicate that the CTPO film exhibited excellent hydrophobicity and mechanical properties, with a water contact angle of 133.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
Downsizing Pt particles and incorporating water dissociation site represents a promising strategy for maximizing atomic utilization efficiency and enhancing catalytic performance in Pt-based hydrogen evolution reaction (HER) electrocatalysts. Here, we present a self-supported Pt/Y(OH) electrocatalyst through a synergistic combination of anion insertion-enhanced electrodeposition and chemical deposition at ambient temperature. The resultant architecture features sub-2 nm Pt nanoclusters (with an average diameter of 1.
View Article and Find Full Text PDFGels
July 2025
Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2025
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Bio-based solutions depend on the application of living organisms to combat current challenges, including marine biofouling, which is characterized by the adhesion and growth of organisms on surfaces at sea. Such solutions traditionally involve single bacterial strains with specific, desirable activities or properties, thereby omitting the advantages conferred by the community context. We propose a novel approach, whereby desirable emergent properties of multispecies communities can be selected, such as those producing a thick and robust biofilm that is impenetrable to settling larvae.
View Article and Find Full Text PDFNat Commun
August 2025
Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China.
Sterically hindered organogels are promising as coatings, adhesives and structural materials since they can overcome the low strength and poor stability of traditional gel materials. However, limited by the mesh size of the polymer network, it is a significant challenge to entrap small solvents to preparing sterically hindered organogels. Herein, a hypercrosslinked polyurea network with small mesh size (~1.
View Article and Find Full Text PDF