Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel organic-inorganic hybrid perovskite crystal, [ClCH(CH)NH]CuBr (), having experienced an invertible high-temperature phase transition near (the Curie temperature = 355 K), has been successfully synthesized. The phase-transition characteristics for compound are thoroughly revealed by specific heat capacity (), differential thermal analysis, and differential scanning calorimetry tests, possessing 16 K broad thermal hysteresis. Multiple-temperature powder X-ray diffraction analysis further proves the phase-transition behavior of compound . Moreover, compound exhibits a significant steplike dielectric response near , revealing that it can be deemed to be a promising dielectric switching material. The variable-temperature fluorescence experiments show distinct photoluminescence (PL) changes of compound . Further investigation and calculation disclose that the fluorescence lifetime of compound can reach as long as 55.46 μs, indicating that it can be a potential PL material. All of these researches contribute a substitutable avenue in the design and construction of neoteric phase-transition compounds combining high Curie temperature and PL properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c02720DOI Listing

Publication Analysis

Top Keywords

high-temperature phase
8
phase transition
8
fluorescence lifetime
8
distinct photoluminescence
8
photoluminescence changes
8
curie temperature
8
compound
5
transition switchable
4
switchable dielectric
4
dielectric behavior
4

Similar Publications

The scalable fabrication of high performance dyes desalination loose nanofiltration (LNF) membrane through facile thermal annealing remains challenging due to the susceptible pore collapse. Herein, we have developed a metal ion mediated sub-Tg thermal crosslinking protocol, which can convert the phase inverted reactive polymeric ultrafiltration substrate into LNF membrane showing high permselectivity as well as resistance to both extremely acid and alkaline solution. The original ultrafiltration substrate was composed of scalable-produced reactive polyarylene ether amidoxime (PEA) that was pre-crosslinked with ferric ions.

View Article and Find Full Text PDF

Bimetallic FeNi-ZSM-5-catalyzed pyrolysis of photovoltaic waste: Selective and high-yield aromatic valorization for circular resource recovery.

Environ Res

September 2025

Guangdong Education Department Key Laboratory of Resources Comprehensive Utilization and Cleaner Production, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.

Catalytic pyrolysis, an efficient thermochemical process, offers a promising pathway to valorize thermoset photovoltaic backsheets (TPV) into high-value chemicals. This study investigates the ex situ catalytic pyrolysis of TPV using two acidic catalysts, ZSM-5 and FeNi-ZSM-5, under varied operational conditions, with a focus on product distribution and process efficiency. The catalytic intervention significantly enhanced pyrolysis performance.

View Article and Find Full Text PDF

Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling.

View Article and Find Full Text PDF

Leptospirosis is a zoonotic disease affecting humans in the tropical and temperate regions. Considerably high mortality rate (60 per 1000 adult) and associated morbidity necessitate the need for efficient diagnostic and therapeutic approaches for this disease. Proteins that play crucial roles in the invasion/pathogenesis are potential candidates for the diagnosis/therapeutics.

View Article and Find Full Text PDF

Cellulose-based aerogels modulate fragrance adsorption and controlled release by carbonization/in-situ aromatization.

Carbohydr Polym

November 2025

Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450000, China. Electronic address:

Fragrances are indispensable additives in consumer products including foods, cosmetics, and tobacco products. However, their inherent instability leads to rapid quality degradation and performance loss, driving the urgent need for controlled-release systems to stabilize fragrance performance. In this work, cellulose nanofibers (CNF) were used to prepare CNF aerogel-like gels (CA) and carbonized CNF aerogels (C-CA) through freeze-drying and high-temperature carbonization.

View Article and Find Full Text PDF