98%
921
2 minutes
20
The reaction of ozone with sea-salt derived bromide is relevant for marine boundary layer atmospheric chemistry. The oxidation of bromide by ozone is enhanced at aqueous interfaces. Ocean surface water and sea spray aerosol are enriched in organic compounds, which may also have a significant effect on this reaction at the interface. Here, we assess the surface propensity of cationic tetrabutylammonium at the aqueous liquid-vapor interface by liquid microjet X-ray photoelectron spectroscopy (XPS) and the effect of this surfactant on ozone uptake to aqueous bromide solutions. The results clearly indicate that the positively charged nitrogen group in tetrabutylammonium (TBA), along with its surface activity, leads to an enhanced interfacial concentration of both bromide and the bromide ozonide reaction intermediate. In parallel, off-line kinetic experiments for the same system demonstrate a strongly enhanced ozone loss rate in the presence of TBA, which is attributed to an enhanced surface reaction rate. We used liquid jet XPS to obtain detailed chemical composition information from the aqueous-solution-vapor interface of mixed aqueous solutions containing bromide or bromide and chloride with and without TBA surfactant. Core level spectra of Br 3d, C 1s, Cl 2p, N 1s, and O 1s were used for this comparison. A model was developed to account for the attenuation of photoelectrons by the carbon-rich layer established by the TBA surfactant. We observed that the interfacial density of bromide is increased by an order of magnitude in solutions with TBA. The salting-out of TBA in the presence of 0.55 M sodium chloride is apparent. The increased interfacial bromide density can be rationalized by the association constants for bromide and chloride to form ion-pairs with TBA. Still, the interfacial reactivity is not increasing simply proportionally with the increasing interfacial bromide concentration in response to the presence of TBA. The steady state concentration of the bromide ozonide intermediate increases by a smaller degree, and the lifetime of the intermediate is 1 order of magnitude longer in the presence of TBA. Thus, the influence of cationic surfactants on the reactivity of bromide depends on the details of the complex environment at the interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607506 | PMC |
http://dx.doi.org/10.1021/acsearthspacechem.1c00233 | DOI Listing |
Eur J Pharm Biopharm
September 2025
Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland; Individualized Drug Therapy Research Program, University of Helsinki, Finland; Wihuri Research Institute, Helsinki, Finland; Helsinki One Health, Helsinki, Finland. Electronic address:
Vascular Endothelial Growth Factor C (VEGFC) is a promising biological drug, with preclinical studies indicating its potential for treating myocardial infarction, neurodegenerative diseases, and lymphedema, a condition that currently lacks curative treatment. While adenoviral VEGFC gene therapy has progressed to phase II studies, its clinical efficacy is limited by rapid immune inactivation. This study explores lignin nanoparticles (LNPs) as an alternative VEGFC delivery system.
View Article and Find Full Text PDFMol Pharmacol
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Genomic Medicine, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Gu
Gastric cancer (GC) is a leading cause of cancer-related deaths globally, with metastasis critically impacting prognosis. Splicing factors are key regulators of tumorigenesis, particularly in metastasis. In this exploratory study, we investigated the role and mechanism of heterogeneous nuclear ribonucleoprotein A/B (HNRNPAB) in GC cell invasion and migration.
View Article and Find Full Text PDFLangmuir
September 2025
Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
Photophysical studies on the interaction of small molecules with various forms of nucleic acids are attracting attention nowadays in order to delineate the molecular level mechanism of various biological processes occurring in vivo. Herein, we employed vivid steady-state and time-resolved spectroscopic techniques to elucidate the detailed characterization of the binding interaction of a biologically active cationic dye thioflavin T (ThT) with double and triple helical forms of RNA - A.U duplex and U.
View Article and Find Full Text PDFOrg Lett
September 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
2-Alkylindoles are privileged motifs that serve as versatile intermediates and building blocks in synthetic and medicinal chemistry. Herein, we report a photoinduced, EDA-complex-enabled C2-benzylic C(sp)-H alkylation of indoles with bromides through radical cross-coupling. This developed protocol provides facile access to 2-alkylindoles from structurally varied 2-methylindoles and bromides under mild reaction conditions with simple operation.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Cross-electrophile coupling (XEC) reactions are considered to be among the most fundamental construction of carbon-carbon bonds in organic chemistry. Traditionally, stoichiometric reductants, including metallic and organic reagents, are required to promote these conversions, resulting in significant waste that contributes to environmental pollution and increased disposal costs. In this study, we report a divided electrochemical synthesis-based cross-coupling platform in which HO is oxidized at the anode surface to generate electrons that produce a lower oxidation state nickel catalyst on the cathode surface, enabling XEC reactions without the need for metallic or organic reagents.
View Article and Find Full Text PDF