98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748235 | PMC |
http://dx.doi.org/10.1111/cas.15178 | DOI Listing |
Clin Oncol (R Coll Radiol)
August 2025
Pharmacy College, Al-Farahidi University, Baghdad, Iraq.
Glioblastoma (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterised by profound genetic, epigenetic, and phenotypic heterogeneity. Recent advancements in high-resolution genome mapping have unveiled the critical role of three-dimensional (3D) chromatin architecture-encompassing chromatin loops, topologically associating domains, and enhancer-promoter interactions-in driving GBM tumourigenesis and therapy resistance. This review summarises recent insights into the mechanistic contribution of 3D genome reorganisation in sustaining oncogenic transcriptional programs, promoting intratumoural heterogeneity, and facilitating adaptive resistance.
View Article and Find Full Text PDFJ Cell Mol Med
September 2025
Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China.
Glioblastoma (GBM) exhibits remarkable intra-tumoral heterogeneity, which contributes to therapeutic resistance and poor clinical outcomes. In this study, we employed integrative single-cell RNA sequencing analysis across two complementary public datasets encompassing diverse cellular populations from GBM centre and periphery regions to elucidate potential spatial molecular programmes driving tumour progression. Our analyses revealed substantial transcriptomic divergence between anatomically distinct tumour regions, with NUCB2 emerging as significantly upregulated in centre-residing neural progenitor cell-like (NPC-like) tumour cells.
View Article and Find Full Text PDFGigascience
January 2025
Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
Background: Pancreatic ductal adenocarcinoma (PDAC), the most common and aggressive form of pancreatic cancer, exhibits profound intratumor morphological heterogeneity, complicating the elucidation of the underlying molecular mechanisms driving its progression.
Results: We present and validate an optimized framework for RNA sequencing (RNA-seq) of multiple spatially resolved laser micro-dissected tumor areas (LMD-seq), along with methodological and analytical details to maximize reproducibility and data mining. This approach enhances sensitivity in detecting lowly expressed genes, outperforming single-cell RNA-seq methods, particularly in identifying rare tumor cell populations and transcriptional programs with low expression.
Gut Liver
September 2025
Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
Background/aims: Patient-derived organoids (PDOs) are promising preclinical models that replicate critical tumor features. However, intratumoral heterogeneity challenges the clinical utility of PDOs, especially in capturing diverse tumor cell subpopulations.
Methods: Single-cell transcriptomics was used to analyze PDOs from distinct sites within a single gastric cancer tumor, aiming to assess their ability to reflect intratumoral heterogeneity.
Front Pharmacol
August 2025
Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China.
Background: Toripalimab combined with chemotherapy has demonstrated significant clinical advantages in improving overall survival compared with chemotherapy alone as a first-line treatment for extensive-stage small-cell lung cancer (ES-SCLC).
Method: An economic evaluation was conducted using a Markov state-transition model to reflect the perspectives of the United States payer and Chinese healthcare systems. Primary outcomes included quality-adjusted life-years (QALYs), incremental cost-effectiveness ratio (ICER), incremental net health benefit (INHB), and incremental net monetary benefit (INMB).