Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatitis C virus (HCV) chronic infection is associated with fibrosis progression, end-stage liver complications and HCC. Not surprisingly, HCV infection is a leading cause of liver-related morbidity and mortality worldwide. After sustained virological response (SVR), the risk of developing hepatocellular carcinoma is not completely eliminated in patients with established cirrhosis or with advanced fibrosis. Therefore, lifelong surveillance is currently recommended. This strategy is likely not universally cost-effective and harmless, considering that not all patients with advanced fibrosis have the same risk of developing HCC. Factors related to the severity of liver disease and its potential to improve after SVR, the molecular and epigenetic changes that occur during infection and other associated comorbidities might account for different risk levels and are likely essential for identifying patients who would benefit from screening programs after SVR. Efforts to develop predictive models and risk calculators, biomarkers and genetic panels and even deep learning models to estimate the individual risk of HCC have been made in the direct-acting antiviral agents era, when thousands of patients with advanced fibrosis and cirrhosis have reached SVR. These tools could help to identify patients with very low HCC risk in whom surveillance might not be justified. In this review, factors affecting the probability of HCC development after SVR, the benefits and risks of surveillance, suggested strategies to estimate individualized HCC risk and the current evidence to recommend lifelong surveillance are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567476PMC
http://dx.doi.org/10.3748/wjg.v27.i40.6737DOI Listing

Publication Analysis

Top Keywords

advanced fibrosis
12
hepatocellular carcinoma
8
risk
8
infection associated
8
risk developing
8
lifelong surveillance
8
patients advanced
8
hcc risk
8
hcc
6
fibrosis
5

Similar Publications

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF

Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.

View Article and Find Full Text PDF

The Trilogy of Skin Regeneration via Metal-Organic Frameworks Nanomedicine: Precision Management of Refractory Wounds, Pathological Scarring, and Hair Follicle Reactivation.

Int J Nanomedicine

September 2025

Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Diabetic infected wounds represent a formidable clinical challenge characterized by persistent hyperglycemia-induced pathological cascades that disrupt normal healing processes through multiple mechanisms including chronic inflammation, oxidative stress, and microvascular dysfunction. As prototypical chronic wounds, they exhibit severely impaired tissue regeneration due to this multifaceted dysfunction in both skin architecture and biological function. Metal-organic frameworks (MOFs) have emerged as promising next-generation therapeutic platforms owing to their exceptional structural tunability, multifunctional properties, and precise spatiotemporal drug delivery capabilities.

View Article and Find Full Text PDF

Dipeptidyl peptidase 1 (DPP1) inhibitors constitute a major advance in respiratory disease therapeutics. Through selective blockade of neutrophil serine protease (NSP) activation, these agents establish novel treatment paradigms for inflammatory respiratory conditions characterized by neutrophil-driven pathology. This comprehensive review examines the development status, clinical efficacy, and safety profile of DPP1 inhibitors in neutrophil-driven diseases, particularly non-cystic fibrosis bronchiectasis (NCFBE) and chronic obstructive pulmonary disease (COPD).

View Article and Find Full Text PDF

Locked nucleic acid-modified antisense oligonucleotides attenuate scar hyperplasia through targeted inhibition of CTGF.

Front Pharmacol

August 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.

Connective tissue growth factor (CTGF) is notably upregulated in scar tissue, making it a promising target for therapeutic intervention. Here, we have designed and screened an antisense oligonucleotide (ASO) that binds specifically to the exon five sequence of CTGF, with particular emphasis on the use of 2'-O-methoxyethyl (MOE) and locked nucleic acid (LNA) modifications to enhance stability and specificity. experiments demonstrated that both MOE-ASO#1 and LNA-ASO#1 significantly inhibited fibroblast proliferation and extracellular matrix protein expression.

View Article and Find Full Text PDF