Artificial exosomes mediated spatiotemporal-resolved and targeted delivery of epigenetic inhibitors.

J Nanobiotechnology

Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Malignant tumor is usually associated with epigenetic dysregulation, such as overexpression of histone deacetylase (HDAC), thus HDAC has emerged as a therapeutic target for cancer. Histone deacetylase inhibitor has been approved for clinical use to treat hematological cancers. However, the low solubility, short circulation lifetime, and high cytotoxicity partially limited their applications in solid tumor.

Methods: The upconversion nanoparticles (UC) modified with mesoporous silica (SUC) was used to load an HDACI, suberoylanilide hydroxamic acid (SAHA), and further camouflaged with M1 macrophage-derived exosome membranes (EMS). EMS was characterized in size and compositions. We also analyzed the epigenetic regulation induced by EMS. Furthermore, we evaluate the biodistribution and in vivo tumor inhibition after the systemic administration of EMS.

Results: This novel style spatiotemporal-resolved drug delivery system, EMS showed a high loading efficiency of SAHA. EMS could be taken up by lung cancer cells and lead to efficient epigenetic inhibition. We found that the integrin α4β1 on M1-EM, was crucial for the homing of EMS to tumor tissues for the first time. In tumor-bearing mice, EMS showed spatiotemporal-resolved properties and facilitated the drug accumulation in the tumors, which induced superior anti-tumor effects.

Conclusion: This novel style of spatiotemporal-resolved nanoparticles can be used as a theranostic platform for lung cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597284PMC
http://dx.doi.org/10.1186/s12951-021-01107-9DOI Listing

Publication Analysis

Top Keywords

histone deacetylase
8
novel style
8
style spatiotemporal-resolved
8
lung cancer
8
ems
7
artificial exosomes
4
exosomes mediated
4
spatiotemporal-resolved
4
mediated spatiotemporal-resolved
4
spatiotemporal-resolved targeted
4

Similar Publications

PUM2 Lowers HDAC9 mRNA Stability to Improve Contrast-Induced Acute Kidney Injury through Attenuating Oxidative Stress and Promoting Autophagy.

Diabetes Metab J

September 2025

Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China.

Background: Contrast-induced acute kidney injury (CIAKI) is the third cause of hospital-acquired acute kidney injury and diabetes mellitus (DM) was identified as a risk factor for CIAKI. However, the molecular mechanism underlying DM-CIAKI remains unclear, which needs further investigation.

Methods: DM-CIAKI models of mice and cells were established.

View Article and Find Full Text PDF

Transcriptome analysis of shade-induced growth and photosynthetic responses in soybean cultivars.

PLoS One

September 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei

Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.

View Article and Find Full Text PDF

Expression of metabolic genes in NK cells is associated with clinical outcomes in patients with severe COVID-19: a brief report.

Front Cell Infect Microbiol

September 2025

Universidad Autónoma de Nuevo León, Servicio y Departamento de Inmunología, Facultad de Medicina, Monterrey, NL, Mexico.

Natural killer (NK) cells are innate lymphocytes with cytotoxic activity against tumors and viruses. The pandemic of the coronavirus disease 2019 (COVID-19) has increased the investigation of their role in disease severity. However, their functional status and modulators remain controversial.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML), a myeloproliferative neoplasm, is characterized by the fusion gene, which results in constitutive tyrosine kinase activity. While tyrosine kinase inhibitors (TKIs) have significantly improved CML outcomes, resistance and the persistence of leukemic stem cells remain major clinical challenges. Curcumin, a natural polyphenol derived from , has demonstrated potential anticancer properties.

View Article and Find Full Text PDF

SIRT2 and NAD Boosting Broadly Suppress Aging-Associated Inflammation.

Aging Cell

September 2025

Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA.

Aging leads to chronic inflammation that is linked to aging-associated conditions and diseases. Multiple immune pathways become activated during aging, posing a challenge to effectively reduce aging-associated inflammation. SIRT2, an NAD-dependent deacetylase, suppresses several immune pathways that become activated during aging and may represent an attractive target to broadly dampen aging-associated inflammation.

View Article and Find Full Text PDF