Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breath analysis by secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) offers the possibility to measure comprehensive metabolic profiles. The technology is currently being deployed in several clinical settings in Switzerland and China. However, patients are required to exhale directly into the device located in a dedicated room. Consequently, clinical implementation in patients incapable of performing necessary exhalation maneuvers (e.g., infants) or immobile (e.g., too weak, elderly, or in intensive care) remains a challenge. The aim of this study was to develop a method to extend such breath analysis capabilities to this subpopulation of patients by collecting breath samples remotely (offline) and promptly (within 10 min) transfer them to SESI-HRMS for chemical analysis. We initially assessed the method in adults by comparing breath mass spectra collected offline with Nalophan bags against spectra of breath samples collected in real time. In total, 13 adults provided 176 pairs of real-time and offline measurements. Lin's concordance correlation coefficient (CCC) was used to estimate the agreement between offline and real-time analyses. Here, 1249 mass spectral features (55% of total detected) exhibited Lin's CCC > 0.6. Subsequently, the method was successfully deployed to analyze breath samples from infants ( = 16), obtaining as a result SESI-HRMS breath profiles. To demonstrate the clinical feasibility of the method, we measured in parallel other clinical variables: (i) lung function, which characterizes the breathing patterns, and (ii) nitric oxide, which is a surrogate marker of airway inflammation. As a showcase, we focused our analysis on the exhaled oxidative stress marker 4-hydroxynonenal and its association with nitric oxide and minute ventilation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c02036DOI Listing

Publication Analysis

Top Keywords

breath analysis
12
breath samples
12
breath
8
lung function
8
nitric oxide
8
analysis
5
combination exhaled
4
exhaled breath
4
analysis parallel
4
parallel lung
4

Similar Publications

Evaluation of lung oxidative stress and inflammatory state using exhaled breath condensate analysis in early-life arsenic exposure.

J Breath Res

September 2025

Department of Anatomy, Physiology, and Cell Biology, , University of California Davis, School of Veterinary Medicine, Davis, California, 95616-5270, UNITED STATES.

Millions of people worldwide are exposed to environmental arsenic in drinking water, resulting in both malignant and nonmalignant diseases. Interestingly, early life exposure by itself is sufficient to produce higher incidences of these diseases later in life. Based on the delayed onset of disease, we hypothesized that early life arsenic exposure would also induce long-term alterations in the metabolic profile.

View Article and Find Full Text PDF

Bacterial volatile organic compounds (VOCs) have been investigated as non-invasive approaches for the diagnosis of infectious diseases. Here, we aimed to explore potential diagnostic markers by profiling VOCs in cultures of unique clinical Clostridioides difficile (C. difficile) isolates and stool samples from pediatric patients with C.

View Article and Find Full Text PDF

Monitoring ferroptosis in vivo: Iron-driven volatile oxidized lipids as breath biomarkers.

Redox Biol

September 2025

Multi-Omics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Human Biology Microbiome Quantum Research Center, Keio University School of Medicine, Tokyo, Japan. Electronic address:

Ferroptosis, an iron-dependent cell death mechanism characterized by excessive lipid peroxidation, has been implicated in numerous human diseases and organ pathologies. However, current detection methods necessitate invasive tissue sampling to assess lipid peroxidation, making noninvasive detection of ferroptosis in human subjects extremely challenging. In this study, we employed oxidative volatolomics to comprehensively characterize the volatile oxidized lipids (VOLs) produced during ferroptosis.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Biomarkers based on volatile organic compounds (VOCs) measured in human breath have been investigated in a wide range of diseases. However, the excitement surrounding such biomarkers has not yet translated to the discovery of any that are ready for clinical implementation. A lack of standardisation in sampling and analysis has been identified as a key obstacle to the validation of potential biomarkers in in multi-centre studies.

View Article and Find Full Text PDF