Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A series of β-amino alcohols were prepared by the reaction of eugenol epoxide with aliphatic and aromatic amine nucleophiles. The synthesized compounds were fully characterized and evaluated as potential insecticides through the assessment of their biological activity against insect cells, compared with a commercial synthetic pesticide (chlorpyrifos, CHPY). Three derivatives bearing a terminal benzene ring, either substituted or unsubstituted, were identified as the most potent molecules, two of them displaying higher toxicity to insect cells than CHPY. In addition, the most promising molecules were able to increase the activity of serine proteases (caspases) pivotal to apoptosis and were more toxic to insect cells than human cells. Structure-based inverted virtual screening and molecular dynamics simulations demonstrate that these molecules likely target acetylcholinesterase and/or the insect odorant-binding proteins and are able to form stable complexes with these proteins. Encapsulation assays in liposomes of DMPG and DPPC/DMPG (1:1) were performed for the most active compound, and high encapsulation efficiencies were obtained. A thermosensitive formulation was achieved with the compound release being more efficient at higher temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587747PMC
http://dx.doi.org/10.3390/molecules26216616DOI Listing

Publication Analysis

Top Keywords

insect cells
12
amino alcohols
4
alcohols eugenol
4
eugenol potential
4
potential semisynthetic
4
semisynthetic insecticides
4
insecticides chemical
4
chemical biological
4
biological computational
4
computational insights
4

Similar Publications

Mosquito reproductive biology is an underexplored area with potential for developing novel vector control strategies. In this study, we investigated the role of the testis-specific serine/threonine-protein kinase (tssk) family, an essential regulator of spermiogenesis in mammals, in mosquitoes. We identified tssk homologues, As_tssk3 and Aea_tssk1, in Anopheles stephensi and Aedes aegypti, respectively and analyzed their expression across different developmental stages.

View Article and Find Full Text PDF

During oxidative phosphorylation, the leaked electrons generate superoxide anions to attack the mitochondrial inner membrane and impair mitochondrial activity. Three superoxide dismutases (SODs) are secreted to degrade host superoxide anions in Verticillium dahliae. However, the roles of mitochondrial SODs (mtSODs) in superoxide anion detoxification and in virulence are unknown in this fungus.

View Article and Find Full Text PDF

Target RNA recognition drives PIWI complex assembly for transposon silencing.

Mol Cell

September 2025

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria. Electronic address:

PIWI-clade Argonaute proteins and their associated PIWI-interacting RNAs (piRNAs) are essential guardians of genome integrity, silencing transposable elements through distinct nuclear and cytoplasmic pathways. Nuclear PIWI proteins direct heterochromatin formation at transposon loci, while cytoplasmic PIWIs cleave transposon transcripts to initiate piRNA amplification. Both processes rely on target RNA recognition by PIWI-piRNA complexes, yet how this leads to effector recruitment is unclear.

View Article and Find Full Text PDF

A conserved PIWI silencing complex detects piRNA-target engagement.

Mol Cell

September 2025

Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA. Electronic address:

In animal germ cells, PIWI proteins use piRNAs to detect active selfish genetic elements. Base-pairing to a piRNA defines transposon recognition, but how this interaction triggers a defensive response remains unclear. Here, we identify a transposon recognition complex composed of the silkworm proteins Siwi, GTSF1, and Maelstrom.

View Article and Find Full Text PDF

The corneal lens is an apical extracellular matrix (aECM) structure with a biconvex shape that enables it to focus light. Chitin, a polymer of N-acetylglucosamine, is a major component of insect corneal lenses . Delayed chitin deposition in mutants and altered levels of chitin processing enzymes in mutants correlate with changes in the shape of corneal lenses , prompting us to investigate the role of chitin in determining corneal lens shape.

View Article and Find Full Text PDF