Nano goes the distance.

Nat Mater

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-021-01071-7DOI Listing

Publication Analysis

Top Keywords

nano distance
4
nano
1

Similar Publications

Interfacial Self-Assembly of Sugars at Nanoscale Membranes Leads to Micron-Scale, Spectroscopically Ice-Like Chiral Suprastructures of Water.

J Am Chem Soc

September 2025

Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.

Life requires chemical chiral specificity. The emergence of enantioselectivity is unknown but has been linked to diverse scenarios for the origin of life, ranging from an extraterrestrial origin to polarization-induced effects, and magnetic field-induced mineral templating. These scenarios require an originating mechanism and a subsequent enhancement step, leading to widespread chiral specificity.

View Article and Find Full Text PDF

Focus-tunable real-time imaging system based on ultrathin perovskite curved image sensor with hierarchical mesh design.

Sci Adv

September 2025

CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.

The human visual system's real-time focus-tunable imaging capability has inspired curved imaging system development. However, curved image sensors mimicking the human retina typically lack tunable curvature to match the curved Petzval surface throughout the focus-tunable range. Here, we propose a focus-tunable real-time curved imaging system based on a tunable-curvature perovskite curved image sensor.

View Article and Find Full Text PDF

Intrinsically Temperature-Insensitive and Highly Sensitive Flexible Wireless Strain Sensor.

ACS Sens

September 2025

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.

Accurate strain monitoring in environments with coexisting mechanical deformation and temperature fluctuations─such as solid rocket propellants, battery enclosures, and human ligaments─remains a longstanding challenge for flexible electronics. Conventional strain sensors suffer from significant thermal drift due to the intrinsic temperature dependence of their sensing materials, limiting their reliability in wireless and implantable applications. Here, we report an intrinsically temperature-insensitive, highly sensitive, wireless flexible strain sensor based on near-field communication technology.

View Article and Find Full Text PDF

Sparge Sampling of Molten Salts for Online Monitoring via Laser-Induced Breakdown Spectroscopy.

ACS Omega

August 2025

Radioisotope Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States.

A method was developed to sample molten salts by sparging to generate and transport aerosols to an isolated instrument for compositional analysis by laser-induced breakdown spectroscopy (LIBS). Real-time monitoring of molten salt composition is critical to developing molten salt nuclear reactors, which offer enhanced safety and efficiency. In this article, the sparge sampling method is described and compared with sampling using a Collison nebulizer.

View Article and Find Full Text PDF

Nanoengineered Optoexcitonic Switch.

ACS Nano

August 2025

Electrical and Computer Engineering Department, University of Michigan; Ann Arbor, Michigan 48109-2122, United States.

The efficiency of most electronic devices is limited by scattering and capacitive losses among purely electronic processes. Charge-neutral excitons could reduce both losses and, thus, offer more efficient switching pathways. However, it remains challenging to achieve exciton transport that is fast, guided, and unidirectional enough for gating processes.

View Article and Find Full Text PDF