98%
921
2 minutes
20
Recently, two cases of complete remission of classical Hodgkin lymphoma (cHL) and follicular lymphoma (FL) after SARS-CoV-2 infection were reported. However, the precise molecular mechanism of this rare event is yet to be understood. Here, we hypothesize a potential anti-tumor immune response of SARS-CoV-2 and based on a computational approach show that: (i) SARS-CoV-2 Spike-RBD may bind to the extracellular domains of CD15, CD27, CD45, and CD152 receptors of cHL or FL and may directly inhibit cell proliferation. (ii) Alternately, upon internalization after binding to these CD molecules, the SARS-CoV-2 membrane (M) protein and ORF3a may bind to gamma-tubulin complex component 3 (GCP3) at its tubulin gamma-1 chain (TUBG1) binding site. (iii) The M protein may also interact with TUBG1, blocking its binding to GCP3. (iv) Both the M and ORF3a proteins may render the GCP2-GCP3 lateral binding where the M protein possibly interacts with GCP2 at its GCP3 binding site and the ORF3a protein to GCP3 at its GCP2 interacting residues. (v) Interactions of the M and ORF3a proteins with these gamma-tubulin ring complex components potentially block the initial process of microtubule nucleation, leading to cell-cycle arrest and apoptosis. (vi) The Spike-RBD may also interact with and block PD-1 signaling similar to pembrolizumab and nivolumab- like monoclonal antibodies and may induce B-cell apoptosis and remission. (vii) Finally, the TRADD interacting "PVQLSY" motif of Epstein-Barr virus LMP-1, that is responsible for NF-kB mediated oncogenesis, potentially interacts with SARS-CoV-2 M, NSP7, NSP10, and spike (S) proteins, and may inhibit the LMP-1 mediated cell proliferation. Taken together, our results suggest a possible therapeutic potential of SARS-CoV-2 in lymphoproliferative disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539762 | PMC |
http://dx.doi.org/10.3390/v13101927 | DOI Listing |
FASEB J
September 2025
Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, Jilin, China.
Tumor-associated macrophages (TAMs) act as a vital player in the immunosuppressive tumor microenvironment (TME) and have received widespread attention in the treatment of cancer in recent times. Nevertheless, simultaneously inducing TAM repolarization and strengthening their phagocytic ability on cancer cells is still a significant challenge. Ferroptosis has received widespread attention due to its lethal effects on tumor cells, but its role in TAMs and its impact on tumor progression have not yet been defined.
View Article and Find Full Text PDFCancer Immunol Res
September 2025
The Wistar Institute, Philadelphia, PA, United States.
Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor-associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket causes preferential cell death in Rbhigh M2 polarized or M2-like Rbhigh immunosuppressive TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Research Center of Nanomedicine Technology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
Cuproptosis relies on intracellular copper accumulation and shows great potential in tumor therapy. However, the high content of glutathione (GSH) in tumor cells limits its effectiveness. Furthermore, the mechanism of immune activation mediated by cuproptosis remains unclear.
View Article and Find Full Text PDFCancer Lett
September 2025
Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China. Electronic address:
Dendritic cells (DCs) are the most powerful antigen-presenting cells (APCs) within the tumour microenvironment (TME), where they orchestrate T cell-mediated anti-tumour immunity and can also be reprogrammed to promote the progression of tumours in the TME. Extracellular vesicles (EVs) are very small and they are secreted by cells and wrapped in lipid bilayers that shuttle bioactive cargoes, including proteins, nucleic acids, and metabolites, to recipient cells, thereby influencing the progression of diseases, including cancer. DC-derived EVs (DC-EVs) play pivotal roles in the TME by mediating crosstalk with other immune and stromal cells to modulate inflammatory responses, angiogenesis, cell death, and immune evasion, thereby regulating the development and progression of tumours.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
September 2025
Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Hunan 3D Printing Engineering Research Center of Oral Care
Innate immune cells play an important role in the immune system and are mainly responsible for the rapid response to foreign pathogens, damaged tissues, or abnormal cells. However, their immunophenotype in oral squamous cell carcinoma (OSCC) is altered due to the influence of various components within the tumour microenvironment, including tumour cells, cancer associated fibroblasts, and the extracellular matrix. This immunophenotypic shift results in the suppression of anti-tumour-related immune functions and active participation in further remodelling of the tumour microenvironment.
View Article and Find Full Text PDF