Biochemical characterization of Arabidopsis clade F polygalacturonase shows a substrate preference toward oligogalacturonic acids.

J Biosci Bioeng

International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan; Cooperative Research Station in Southeast Asia (OU:CRS), Faculty of Science, Mahidol University, Bangkok, Thai

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polygalacturonases (PGs) hydrolyze α-1,4-linked d-galacturonic acid (GalUA) in polygalacturonic acid. Previously, PG activity in pea seedlings was found in the Golgi apparatus, where pectin biosynthesis occurs. However, the corresponding genes encoding Golgi-localized PG proteins have never been identified in the higher plants. In this study, we cloned the 5 Arabidopsis genes encoding putative membrane-bound PGs from clade F PGs (AtPGFs) as the first step for the discovery of the Golgi-localized PGs. Five AtPGF proteins (AtPGF3, AtPGF6, AtPGF10, AtPGF14 and AtPGF16) were heterologously produced in Schizosaccharomyces pombe. Among these, only the AtPGF10 protein showed in vitro exo-type PG activity toward fluorogenic pyridylaminated-oligogalacturonic acids (PA-OGAs) as a substrate. The optimum PG activity was observed at pH 5.5 and 60°C. The recombinant AtPGF10 protein showed the maximum PG activities toward PA-OGA with 10 degrees of polymerization. The apparent K values for the PA-OGAs with 7, 11 and 14 degrees of polymerization were 8.0, 22, and 5.9 μM, respectively. This is the first report of the identification and enzymatic characterization of AtPGF10 as PG carrying putative membrane-bound domain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2021.08.007DOI Listing

Publication Analysis

Top Keywords

genes encoding
8
putative membrane-bound
8
atpgf10 protein
8
degrees polymerization
8
biochemical characterization
4
characterization arabidopsis
4
arabidopsis clade
4
clade polygalacturonase
4
polygalacturonase substrate
4
substrate preference
4

Similar Publications

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

The genomes of 43 distinct lactococcal strains were reconstructed by a combination of long- and short-read sequencing, resolving the plasmid complement and methylome of these strains. The genomes comprised 43 chromosomes of approximately 2.5 Mb each and 269 plasmids ranging from 2 to 211 kb (at an average occurrence of 6 per strain).

View Article and Find Full Text PDF

Objective: The key molecular events signifying the -induced gastric carcinogenesis process are largely unknown.

Methods: Bulk tissue-proteomics profiling were leveraged across multi-stage gastric lesions from Linqu ( = 166) and Beijing sets ( = 99) and single-cell transcriptomic profiling ( = 18) to decipher key molecular signatures of -related gastric lesion progression and gastric cancer (GC) development. The association of key proteins association with gastric lesion progression and GC development were prospectively studied building on follow-up of the Linqu set and UK Biobank ( = 48,529).

View Article and Find Full Text PDF

Background: Hospital surfaces are critical reservoirs of multidrug-resistant pathogens, including third-generation cephalosporin-resistant Gram-negative bacteria (3GC-R-GNB), significantly contributing to healthcare-associated infections (HCAIs). This challenge is pronounced in low- and middle-income countries, where resource constraints limit effective infection prevention and control (IPC) measures. This study screened hospital surfaces for 3GC-R-GNB in selected District Hospitals (DHs) in Mwanza, Tanzania.

View Article and Find Full Text PDF