Publications by authors named "Kazuhito Fujiyama"

N-Glycosylation critically influences the efficacy, safety and pharmacokinetic properties of biopharmaceuticals. Plant expression platforms offer multiple advantages for the production of N-glycosylated proteins, but their use is impeded by the presence of plant-specific N-glycan epitopes, which raise concerns of possible immunogenicity to humans. In this study, N-glycoengineered Nicotiana benthamiana plants that produce more homogeneous N-glycans without plant-specific epitopes were generated using multiplex CRISPR/Cas9 genome editing.

View Article and Find Full Text PDF

A complete iron deficiency in iron-sensitive oleaginous yeast showed insufficient biomass, resulting in a lower lipid amount, although lipid accumulation was greater compared to deficiency in other ions. In this study, the effect of functional iron deficiency on lipid production on Rhodotorula toruloides NBRC 0559 was examined. Two supplements, an iron-added (growth) supplement and an iron-free (lipid-producing) supplement were tested for detecting functional iron deficiency.

View Article and Find Full Text PDF

The "a" determinant, a highly conformational region within the hepatitis B virus large surface protein (LHBs), is crucial for antibody neutralization and diagnostic assays. Mutations in this area can lead to conformational changes, resulting in vaccination failure, diagnostic evasion, and disease progression. The "a" determinant of LHBs contains a conserved N-linked glycosylation site at N320, but the mechanisms of glycosylation in LHBs remain unclear.

View Article and Find Full Text PDF

Human milk oligosaccharides (HMOs) have been positively associated with child neurodevelopment in some cohort studies. However, there is a lack of consistency in the association between HMOs and benefits to infants' brains. Moreover, the quantification methods for HMOs have not yet been standardized.

View Article and Find Full Text PDF

Mucilage is a gelatinous and sticky hydrophilic polysaccharide released from epidermal cells of seed coat after the hydration of mature seeds and is composed primarily of unbranched rhamnogalacturonan I (RG-I). In this study, we produced a recombinant endo-RG-I hydrolase from Aspergillus aculeatus (AaRhgA) in the fission yeast Schizosaccharomyces pombe and examined its substrate preference for pyridylaminated (PA) RG-I with the various degrees of polymerization (DP). Recombinant AaRhgA requires PA-RG-I with a DP of 10 or higher for its hydrolase activity.

View Article and Find Full Text PDF

Unable to move on their own, plants have acquired the ability to produce a wide variety of low molecular weight compounds to survive against various stresses. It is estimated that there are as many as one million different kinds. Plants also have the ability to accumulate high levels of proteins.

View Article and Find Full Text PDF
Article Synopsis
  • * Mutations in glycosylation sites of LHBs led to increased autophagy-related gene expression and abnormal autophagosome accumulation in liver cancer cells, indicating a disruption in normal autophagic processes.
  • * The study highlights that these mutations enhance HBV replication and secretion, suggesting that understanding this relationship could reveal new insights into liver cancer development and HBV pathology.
View Article and Find Full Text PDF

Horseshoe crab Factor G is a heterodimeric serine protease zymogen that is activated by (1→3)-β-D-glucans (BDG) from fungal cell walls. This reaction is used in diagnostic agents for deep-seated mycosis. At present, functional analysis using Factor G from Tachypleus tridentatus has been performed, and genetic information has been published, but reconstitution using recombinant proteins has not yet been achieved.

View Article and Find Full Text PDF

-glycan engineering has dramatically evolved for the development and quality control of recombinant antibodies. Fc region of IgG contains two -glycans whose galactose terminals on Fc-glycan have been shown to increase the stability of CH2 domain and improve effector functions. has become one of the most attractive production systems for therapeutic antibodies.

View Article and Find Full Text PDF

Microbial lipids are considered promising and environmentally friendly substitutes for fossil fuels and plant-derived oils. They alleviate the depletion of limited petroleum storage and the decrement of arable lands resulting from the greenhouse effect. Microbial lipids derived from oleaginous yeasts provide fatty acid profiles similar to plant-derived oils, which are considered as sustainable and alternative feedstocks for use in the biofuel, cosmetics, and food industries.

View Article and Find Full Text PDF

High accumulation of a single high-mannose glycan structure is important to ensure the quality of therapeutic proteins. We developed a glyco-engineering strategy for ensuring high accumulation of the ManGlcNAc structure by combining N-acetylglucosaminyltransferase I (GnT I) gene suppression and mannosidase I (Man I) gene overexpression. Nicotiana tabacum SR1 was used as the glyco-engineered host owing to the lower risk of pathogenic contamination than that in mammalian cells.

View Article and Find Full Text PDF

Unlabelled: Immunoglobulin A (IgA) has been showing potential as a new therapeutic antibody. However, recombinant IgA suffers from low yield. Supplementation of the medium is an effective approach to improving the production and quality of recombinant proteins.

View Article and Find Full Text PDF

The human basic fibroblast growth factor (bFGF) is a protein that plays a pivotal role in cellular processes like cell proliferation and development. As a result, it has become an important component in cell culture systems, with applications in biomedical engineering, cosmetics, and research. Alternative production techniques, such as transient production in plants, are becoming a feasible option as the demand continues to grow.

View Article and Find Full Text PDF

The silkworm, Bombyx mori, is an attractive host for recombinant protein production due to its high expression efficiency, quality, and quantity. Two expression systems have been widely used for recombinant protein production in B. mori: baculovirus/silkworm expression system and transgenic silkworm expression system.

View Article and Find Full Text PDF

The production of recombinant proteins using insect cells has been widely used for over 30 years, which contributing to life science research and biotechnology. Insect cells exhibiting enhanced N-glycosylation and recombinant protein productivity enhance the productivity of the baculovirus-insect cell system (BICS). A new highly proliferative insect cell strain, 2g2, was established from the Mamestra brassicae pupa ovary cell strain NIAS-MB-32 (RCB0413) to address the problem of Sf-rhabdovirus and to explore the newly available possibilities in BICS as well as Sf9, such as increased protein production and recombinant baculovirus amplification.

View Article and Find Full Text PDF

Plants are an efficient production platform for manufacturing glycoengineered monoclonal antibodies and antibody-like molecules. Avaren-Fc (AvFc) is a lectin-Fc fusion protein or lectibody produced in Nicotiana benthamiana, which selectively recognizes cancer-associated high-mannose glycans. In this study, we report the generation of a glycovariant of AvFc that is devoid of plant glycans, including the core α1,3-fucose and β1,2-xylose residues.

View Article and Find Full Text PDF

N-glycosylation of proteins is an important post-translational modification in eukaryotic cells. One of the key modifications in protein N-glycosylation is N-acetylglucosamine (GlcNAc) extension mediated by N-acetylglucosaminyltransferase I (GNTI), which triggers N-glycan maturation from high-mannose-type to hybrid- and complex-type structures in Golgi. However, the temporal contributions of GNTI to GlcNAc extension and the resultant N-glycan structures in insects have not been analyzed.

View Article and Find Full Text PDF

Miracle fruit, Synsepalum dulcificum, produces a unique taste-modifying protein, miraculin (MIR), which has an attractive potential for commercial application as a novel low-calorie sweetener. To establish a stable supply system for MIR, a previous study established a platform for recombinant MIR (rMIR) production in tomato plants and demonstrated that native miraculin from miracle fruit (nMIR) and rMIR were almost identical in their protein modifications with N-glycan. However, neither N-glycosylation nor the influence of fruit maturation on the structural changes of N-glycan have been fully characterized in detail.

View Article and Find Full Text PDF

Gaucher disease is an inherited lysosomal storage disorder caused by an insufficiency of active β-glucocerebrosidase (GCase). Exogenous recombinant GCase via enzyme replacement therapy is considered the most practical treatment for Gaucher disease. Mannose receptors mediate the efficient uptake of exogenous GCase into macrophages.

View Article and Find Full Text PDF

Unlabelled: Although antibodies have attracted attention as next-generation biopharmaceuticals, the costs of purifying the products and of arranging the environment for cell cultivation are high. Therefore, there is a need to increase antibody efficacy and improve product quality as much as possible. Since antibodies are glycoproteins, their glycan structures have been found to affect the function of antibodies.

View Article and Find Full Text PDF

-Glycosylation is essential for protein stability, activity and characteristics, and is often needed to deliver pharmaceutical glycoproteins to target cells. A paucimannosidic structure, ManGlcNAc (M3), has been reported to enable cellular uptake of glycoproteins through the mannose receptor (MR) in humans, and such uptake has been exploited for the treatment of certain diseases. However, M3 is generally produced at a very low level in plants.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on polygalacturonases (PGs), which break down a specific type of sugar (d-galacturonic acid) in pectin, with a particular interest in PGs found in the Golgi apparatus of plant cells, where pectin is made.
  • - Researchers successfully cloned five genes from Arabidopsis that code for membrane-bound PG proteins (AtPGFs) and produced these proteins in a type of yeast for further study.
  • - Among these proteins, AtPGF10 exhibited significant enzymatic activity under certain conditions, marking the first identification and characterization of a Golgi-localized PG protein in higher plants.
View Article and Find Full Text PDF

Plant acidic peptide: N-glycanase (aPNGase) release N-glycans from glycopeptides during the degradation process of glycoproteins in developing or growing plants. We have previously developed a new method to detect the aPNGase activity in crude extracts, which is prerequisite for the construction of aPNGase knockout or overexpression lines. However, this method has the disadvantage of requiring de-sialylation treatment and a lectin chromatography.

View Article and Find Full Text PDF

Plant cell cultures have emerged as a promising platform for the production of biopharmaceutics due to their cost-effectiveness, safety, ability to control the cultivation, and secrete products into culture medium. However, the use of this platform is hindered by the generation of plant-specific -glycans, the inability to produce essential -glycans for cellular delivery of biopharmaceutics, and low productivity. In this study, an alternative acid-alpha glucosidase (GAA) for enzyme replacement therapy of Pompe disease was produced in a glycoengineered cell culture.

View Article and Find Full Text PDF

Gaucher disease is an inherited lysosomal storage disorder caused by a deficiency of functional enzyme β-glucocerebrosidase (GCase). Recombinant GCase has been used in enzyme replacement therapy to treat Gaucher disease. Importantly, the terminal mannose -glycan structure is essential for the uptake of recombinant GCase into macrophages via the mannose receptor.

View Article and Find Full Text PDF