Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Immunoglobulin A (IgA) has been showing potential as a new therapeutic antibody. However, recombinant IgA suffers from low yield. Supplementation of the medium is an effective approach to improving the production and quality of recombinant proteins. In this study, we adapted IgA1-producing CHO-K1 suspension cells to a high concentration (150 mM) of different disaccharides, namely sucrose, maltose, lactose, and trehalose, to improve the production and quality of recombinant IgA1. The disaccharide-adapted cell lines had slower cell growth rates, but their cell viability was extended compared to the nonadapted IgA1-producing cell line. Glucose consumption was exhausted in all cell lines except for the maltose-adapted one, which still contained glucose even after the 9th day of culturing. Lactate production was higher among the disaccharide-adapted cell lines. The specific productivity of the maltose-adapted IgA1-producing line was 4.5-fold that of the nonadapted line. In addition, this specific productivity was higher than in previous productions of recombinant IgA1 with a lambda chain. Lastly, secreted IgA1 aggregated in all cell lines, which may have been caused by self-aggregation. This aggregation was also found to begin inside the cells for maltose-adapted cell line. These results suggest that a high concentration of disaccharide-supplemented induced hyperosmolarity in the IgA1-producing CHO-K1 cell lines. In addition, the maltose-adapted CHO-K1 cell line benefited from having an additional source of carbohydrate.

Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00571-5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018586PMC
http://dx.doi.org/10.1007/s10616-023-00571-5DOI Listing

Publication Analysis

Top Keywords

cell lines
20
recombinant iga1
12
cell
10
cho-k1 suspension
8
suspension cells
8
production quality
8
quality recombinant
8
iga1-producing cho-k1
8
high concentration
8
disaccharide-adapted cell
8

Similar Publications

Proteomics Uncovers Enrichment Bias of Common Extracellular Vesicle Isolation Methods in HEK293T Cells.

J Proteome Res

September 2025

School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330031, China.

Extracellular vesicles (EVs) are membranous structures consisting of lipid bilayers that are released by most cell types and serve as important mediators of intercellular communication. The HEK293T cell line model has gained considerable attention from the scientific community, particularly in the fields of engineering and drug delivery. Nevertheless, there is a dearth of systematic comparisons of the most prevalent EV isolation methodologies for HEK293T in terms of recovery and specificity.

View Article and Find Full Text PDF

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF

FTOregulated mA modification of primiR139 represses papillary thyroid carcinoma metastasis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.

View Article and Find Full Text PDF

Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.

View Article and Find Full Text PDF