Effect of fruit maturation on N-glycosylation of plant-derived native and recombinant miraculin.

Plant Physiol Biochem

International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka, 565, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka, 565-0871, Japan; Osaka University Cooperative Research Station in Southeas

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Miracle fruit, Synsepalum dulcificum, produces a unique taste-modifying protein, miraculin (MIR), which has an attractive potential for commercial application as a novel low-calorie sweetener. To establish a stable supply system for MIR, a previous study established a platform for recombinant MIR (rMIR) production in tomato plants and demonstrated that native miraculin from miracle fruit (nMIR) and rMIR were almost identical in their protein modifications with N-glycan. However, neither N-glycosylation nor the influence of fruit maturation on the structural changes of N-glycan have been fully characterized in detail. Here, with a focus on N-glycosylation and the contribution of fruit maturation to N-glycan, we reanalyzed the N-glycosylation of the natural maturation stages of nMIR and rMIR, and then compared the N-glycan structures on MIRs prepared from the fruit at two different maturation stages. The detailed peptide mapping and N-glycosylation analysis of MIRs provided evidence that MIRs have variants, which were derived mainly from the differences in the N-glycan structure in nMIR and the N-glycosylation in rMIR and not from the cleavage of the peptide backbone. N-Glycan analysis of MIRs from the maturation stage of fruits demonstrated that N-glycan structures were similar among nMIRs and rMIRs at every maturation stage. These results indicated that the heterogeneously expressed rMIRs had the same characteristics in post-translational modifications, especially N-glycosylation and N-glycan structures, throughout the maturation stages. This study demonstrated the potential of recombinant protein expressed in tomato plants and paves the way for the commercial use of rMIR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.02.026DOI Listing

Publication Analysis

Top Keywords

fruit maturation
16
maturation stages
12
n-glycan structures
12
miraculin miracle
8
miracle fruit
8
tomato plants
8
nmir rmir
8
n-glycan
8
analysis mirs
8
maturation stage
8

Similar Publications

The sterile insect technique (SIT) is a highly effective biologically-based method for the suppression of many insect pest populations. SIT efficacy could be improved by methods of male sterilization that avoid the use of irradiation that can result in diminished fitness and mating competitiveness. Alternative sterilization methods include conditional disruption of genes for male fertility, or using their sperm-specific promoters to drive the expression of genes for lethal effectors.

View Article and Find Full Text PDF

Functional analysis of Sf-NPF1 in food intake and antifeedant induction by azadirachtin in Spodoptera frugiperda larvae.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Azadirachtin, a highly effective botanical pesticide, demonstrated notable biological activities against Spodoptera frugiperda, including mortality induction, growth and development inhibition, and antifeedant effects. Neuropeptide F (NPF) has been shown to play a role in various physiological processes in insects. Nonetheless, the functions of Sf-NPF1 in regulating food intake and antifeedant induction by azadirachtin in S.

View Article and Find Full Text PDF

Background: Fertilization of plants with selenium (Se) can enhance their resistance to abiotic stresses and improve human health and nutrition. However, Se fertilization in olive trees remains underexplored. This study evaluated the effect of foliar sodium selenite fertilization on leaf Se content, oxidative stress, olive tree productivity, biofortification of extra virgin olive oils (EVOO), and their physicochemical and antioxidant attributes in two mature 'Arbequina' olive orchards.

View Article and Find Full Text PDF

QuEChERS method of extraction followed by detection with Liquid Chromatograph Mass spectrometry was carried out to determine persistence of tetraniliprole and its metabolite in pigeon pea. The mean recovery of tetraniliprole and its metabolite BCS-CQ 63359 in immature and mature pods, seeds and grains of pigeon pea and soil were in the range of 76.38-105.

View Article and Find Full Text PDF

Active films displayed substantial prospects to maintain quality of tropical fruits during storage and transportation. This study developed multifunctional composite films loaded with melatonin/carvacrol nanoemulsions (MCNE) in guar gum/pullulan polysaccharide (GP) matrixes. The SEM analysis showed that MCNE was uniformly dispersed in GP film matrixes, and formed dense and continuous phase structure.

View Article and Find Full Text PDF