Wearable Wireless Biosensor Technology for Monitoring Cattle: A Review.

Animals (Basel)

Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Korea.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The review aimed to collect information about the wearable wireless sensor system (WWSS) for cattle and to conduct a systematic literature review on the accuracy of predicting the physiological parameters of these systems. The WWSS was categorized as an ear tag, halter, neck collar, rumen bolus, leg tag, tail-mounted, and vaginal mounted types. Information was collected from a web-based search on Google, then manually curated. We found about 60 WWSSs available in the market; most sensors included an accelerometer. The literature evaluating the WWSS performance was collected through a keyword search in Scopus. Among the 1875 articles identified, 46 documents that met our criteria were selected for further meta-analysis. Meta-analysis was conducted on the performance values (e.g., correlation, sensitivity, and specificity) for physiological parameters (e.g., feeding, activity, and rumen conditions). The WWSS showed high performance in most parameters, although some parameters (e.g., drinking time) need to be improved, and considerable heterogeneity of performance levels was observed under various conditions (average = 76%). Nevertheless, some of the literature provided insufficient information on evaluation criteria, including experimental conditions and gold standards, to confirm the reliability of the reported performance. Therefore, guidelines for the evaluation criteria for studies evaluating WWSS performance should be drawn up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532812PMC
http://dx.doi.org/10.3390/ani11102779DOI Listing

Publication Analysis

Top Keywords

wearable wireless
8
physiological parameters
8
evaluating wwss
8
wwss performance
8
evaluation criteria
8
performance
6
wwss
5
wireless biosensor
4
biosensor technology
4
technology monitoring
4

Similar Publications

Real-Time Continuous Tongue Pressure Measurement With Mouthguard-Type Pressure-Sensing Device.

Orthod Craniofac Res

September 2025

Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.

Objective: It is well-established that occlusion and dental arch form are related to the morphology and function of the oral soft tissues. Oral soft tissue dynamic assessment is important for elucidating the causes of malocclusion and developing effective treatment methods. We previously developed a small mouthguard-type sensing device for measuring oral soft tissue pressure; however, its continuous measurement performance had not been thoroughly evaluated.

View Article and Find Full Text PDF

Neuroprostheses capable of providing Somatotopic Sensory Feedback (SSF) enables the restoration of tactile sensations in amputees, thereby enhancing prosthesis embodiment, object manipulation, balance and walking stability. Transcutaneous Electrical Nerve Stimulation (TENS) represents a primary noninvasive technique for eliciting somatotopic sensations. Devices commonly used to evaluate the effectiveness of TENS stimulation are often bulky and main powered.

View Article and Find Full Text PDF

Technologies and emerging trends in wearable biosensing.

Prog Mol Biol Transl Sci

September 2025

School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:

This chapter examines advancements and future trajectories in wearable biosensing technologies, a multidisciplinary field encompassing healthcare, materials science, and information technology. Wearable biosensors are revolutionizing real-time physiological and biochemical monitoring with applications in personalized health monitoring, disease diagnosis, fitness, and therapeutic interventions. In addition to Internet of Things (IoT) and wireless connectivity technologies such as Bluetooth Low Energy (BLE) and 5G, which facilitate transparent remote monitoring and data exchange, other notable innovations such as machine learning and artificial intelligence enhance real-time processing of data, predictive analytics, and personalized healthcare solutions.

View Article and Find Full Text PDF

Thermoresponsive dynamic wet-adhesive epidermal interface for motion-robust multiplexed sweat biosensing.

Biosens Bioelectron

September 2025

Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, PR China. Electronic address:

Wearable sweat sensors offer noninvasive health monitoring through multiplexed biomarker analysis, delivering real-time diagnostics with continuous operational capability. However, chronic cutaneous interface hydration during prolonged monitoring induces adhesive delamination phenomena that manifest as signal attenuation, which fundamentally limits their clinical reliability. To address this challenge, we developed a thermodynamically adaptive polymer interface combining three functional components: mussel-inspired catechol moieties for moisture-tolerant adhesion, hydrophobic acrylates ensuring mechanical stability, and N-isopropylacrylamide enabling thermal responsiveness.

View Article and Find Full Text PDF

Wearable Point-of-Care Biosensor for Biomolecular Assay in Health Monitoring.

ACS Appl Bio Mater

September 2025

Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China.

Wearable biosensors represent a significant advancement in preventive health monitoring by enabling early disease detection through real-time bioanalysis. This review examines the evolution of point-of-care testing (POCT), with a focus on materials, fabrication techniques, and real-world applications. These biosensors utilize advanced materials, such as supramolecular hydrogels, and innovative manufacturing methods, providing high sensitivity, specificity, and portability.

View Article and Find Full Text PDF