98%
921
2 minutes
20
Thin-film composite (TFC) membranes are the most widely used membranes for low-cost and energy-efficient water desalination processes. Proper control over the three influential surface parameters, namely wettability, roughness, and surface charge, is vital in optimizing the TFC membrane surface and permeation properties. More specifically, the surface properties of TFC membranes are often tailored by incorporating novel special wettability materials to increase hydrophilicity and tune surface physicochemical heterogeneity. These essential parameters affect the membrane permeability and antifouling properties. The membrane surface characterization protocols employed to date are rather controversial, and there is no general agreement about the metrics used to evaluate the surface hydrophilicity and physicochemical heterogeneity. In this review, we surveyed and critically evaluated the process that emerged for understanding the membrane surface properties using the simple and economical contact angle analysis technique. Contact angle analysis allows the estimation of surface wettability, surface free energy, surface charge, oleophobicity, contact angle hysteresis, and free energy of interaction; all coordinatively influence the membrane permeation and fouling properties. This review will provide insights into simplifying the evaluation of membrane properties by contact angle analysis that will ultimately expedite the membrane development process by reducing the time and expenses required for the characterization to confirm the success and the impact of any modification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2021.102524 | DOI Listing |
Food Chem X
August 2025
School of Life Science, Anqing Normal University, Jixian North Road1318, Yixiu District, Anqing 246052, Anhui Province, China.
Frozen storage deteriorates the texture and digestibility of frozen rice dough by damaging gliadin structure and starch integrity. This study investigated carboxymethyl chitosan (CMCh) and sodium carboxymethyl cellulose (CMCNa) as cry-oprotectants to mitigate these effects. Comprehensive analysis utilizing nuclear magnetic resonance (NMR), texture profile analysis (TPA), dynamic contact angle measurement (DCAT21), reversed-phase high-performance liquid chromatography (RP-HPLC), and circular dichroism (CD) demonstrated that 1.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Faculty of Environment and Resource Studies, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
Soil washing with surfactants is a promising technique for remediating petroleum hydrocarbon-contaminated soils. This study evaluates a biosurfactant extracted from Eichhornia crassipes (water hyacinth), an abundant aquatic weed in Thailand, using ultrasound-assisted extraction for diesel-contaminated soil remediation. The biosurfactant extract (Extract WH) was characterized for its surface tension reduction, critical micelle concentration (CMC), emulsification capacity with diesel, and phytotoxicity.
View Article and Find Full Text PDFBiomed Mater
September 2025
Department of Nanobiotechnology, Faculty of Biological Sciences, , Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran, Tehran, Tehran Province, 14115-154, Iran (the Islamic Republic of).
It is essential to develop new strategies for wound treatment and skin reconstruction, particularly by scaffolds that replicate the structure and function of native skin. A bilayer scaffold was developed using three-dimensional (3D) bioprinting, based on a uniform chitosan-based formulation for both layers, maintaining material uniformity while offering structural support and promoting cell adhesion. The upper chitosan layer, embedded with NHEK-Neo, is stiffer and mimics the epidermis, while the softer lower layer contains embedded HFFs and HFSCs, mimicking the dermis.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Hydro Science and Engineering, and Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:
Hypothesis: On highly cleaned planar surfaces submerged in highly cleaned water, flat surface nanobubbles with an angle of attachment of ∼15 are observed - never on engineering surfaces submerged in plain water, though here unidentified cavitation nuclei are always present and cause low tensile strength.
Experiments: In the present study, surface nanobubbles are generated by standard experimental techniques on a polished steel surface, and we find that the shape and the angles of attachment of the bubbles are influenced by the local substrate topography. These observations align with the theory of non-adsorbed liquid zones, which explains a surface nanobubble as a bubble with a skin of contamination molecules, which bond along the bubble rim at a contact angle of ∼14.
Discov Nano
September 2025
RRU 709, Department of Clinical Pharmacology, Advanced Centre for Training, Research and Education in Cancer, Kharghar, Navi Mumbai, India.
In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.
View Article and Find Full Text PDF