Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optical properties of benzimidazole (BI)-doped layer-by-layer graphene differ significantly from those of intrinsic graphene. Our study based on transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling reveals that such a difference stems from its peculiar stratified geometry formed in situ during the doping process. This work presents an effective thickness and optical constants that can treat these multi-stacked BI-doped graphene electrodes as a single equivalent medium. For verification, the efficiency and angular emission spectra of organic light-emitting diodes with the BI-doped graphene electrode are modeled with the proposed method, and we demonstrate that the calculation matches experimental results in a much narrower margin than that based on the optical properties of undoped graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.430149DOI Listing

Publication Analysis

Top Keywords

graphene electrodes
8
optical properties
8
bi-doped graphene
8
graphene
6
identification multi-stack
4
multi-stack structure
4
structure graphene
4
electrodes doped
4
doped layer-by-layer
4
layer-by-layer benzimidazole
4

Similar Publications

Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.

View Article and Find Full Text PDF

Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.

View Article and Find Full Text PDF

Biphenylite with an Ultrahigh Capacity of Hexafluorophosphate Anions as a Promising Electrode Material in Dual-Ion Batteries.

ACS Appl Mater Interfaces

September 2025

Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.

Dual-ion batteries (such as alkali metal ion-hexafluorophosphate anion systems) have demonstrated an excellent performance; however, identifying suitable cathode materials with superior electrochemical properties remains a major challenge impeding their advancement. In this work, the feasibility of biphenylite as a dual-ion battery cathode material is investigated systematically by first-principles calculations. The calculated result indicates that biphenylite has an ultrahigh cathode specific capacity for PF anions (107.

View Article and Find Full Text PDF

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF

Electrochemical sensors capable of detecting different types of biomolecules using a single electrode are highly desirable for simplifying analytical platforms and expanding their practical applicability. Herein, we develop a multifunctional electrochemical sensor based on a 3D honeycomb-like porous rGO/PPy-POM composite film for the independent detection of dopamine (DA) and folic acid (FA), two chemically distinct and clinically relevant biomolecules. The electrode is fabricated through a facile, low-cost, and environmentally friendly breath figure method to create a 3D porous reduced graphene oxide (rGO) framework, followed by codeposition of polypyrrole (PPy) and polyoxometalates (POMs).

View Article and Find Full Text PDF