Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objectives: Intensive care unit-acquired weakness (ICU-AW) commonly occurs among intensive care unit (ICU) patients and seriously affects the survival rate and long-term quality of life for patients. In this systematic review, we synthesized the findings of previous studies in order to analyze predictors of ICU-AW and evaluate the discrimination and validity of ICU-AW risk prediction models for ICU patients.

Methods: We searched seven databases published in English and Chinese language to identify studies regarding ICU-AW risk prediction models. Two reviewers independently screened the literature, evaluated the quality of the included literature, extracted data, and performed a systematic review.

Results: Ultimately, 11 studies were considered for this review. For the verification of prediction models, internal verification methods had been used in three studies, and a combination of internal and external verification had been used in one study. The value for the area under the ROC curve for eight models was 0.7-0.923. The predictor most commonly included in the models were age and the administration of corticosteroids. All the models have good applicability, but most of the models are biased due to the lack of blindness, lack of reporting, insufficient sample size, missing data, and lack of performance evaluation and calibration of the models.

Conclusions: The efficacy of most models for the risk prediction of ICU-AW among high-risk groups is good, but there was a certain bias in the development and verification of the models. Thus, ICU medical staff should select existing models based on actual clinical conditions and verify them before applying them in clinical practice. In order to provide a reliable basis for the risk prediction of ICU-AW, it is necessary that large-sample, multi-center studies be conducted in the future, in which ICU-AW risk prediction models are verified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462700PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257768PLOS

Publication Analysis

Top Keywords

risk prediction
24
prediction models
20
intensive care
16
models
12
icu-aw risk
12
care unit-acquired
8
unit-acquired weakness
8
care unit
8
patients systematic
8
systematic review
8

Similar Publications

Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.

View Article and Find Full Text PDF

Background: Red blood cell (RBC) transfusion is a common intervention for anemia in preterm infants; however, its association with bronchopulmonary dysplasia (BPD) remains debated. While biological mechanisms suggest potential harm, the clinical impact of transfusion frequency on BPD incidence and severity remains unclear.

Objective: To investigate whether RBC transfusion frequency is independently associated with the risk and severity of BPD in preterm infants born before 32 weeks of gestation.

View Article and Find Full Text PDF

The Grams model, designed to predict adverse event risks in advanced chronic kidney disease (CKD) patients, was evaluated in a Chinese cohort of 1,333 patients with eGFR below 30 mL/min/1.73 m. The model demonstrated moderate to good discrimination across outcomes, performing well in predicting kidney replacement therapy (KRT) but overestimating the risks of cardiovascular disease (CVD) and mortality.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Young-onset monogenic disorders often show variable penetrance, yet the underlying causes remain poorly understood. Uncovering these influences could reveal new biological mechanisms and enhance risk prediction for monogenic diseases. Here we show that polygenic background substantially shapes the clinical presentation of maturity-onset diabetes of the young (MODY), a common monogenic form of diabetes that typically presents in adolescence or early adulthood.

View Article and Find Full Text PDF