98%
921
2 minutes
20
Serine and arginine-rich splicing factor 3 (SRSF3), the smallest member of the Ser/Arg-rich (SR) RNA-binding protein family, regulates multiple aspects of post-transcriptional gene expression program. Although SRSF3 is essential for early embryo development, reprogramming, and pluripotency maintenance, the RNA targets and specificity of RNA recognition of SRSF3 are not well understood in human pluripotent stem cells. In this study, we used inducible TRIBE (targets of RNA binding sites by editing) to identify RNA targets and binding motifs of SRSF3 in human embryonic stem cells (hESCs). We identified 3888 confident binding sites of SRSF3, corresponding to 1222 gene targets. Our results showed that nearly half of the binding sites were distributed in exons, reflecting the alternative splicing function of SRSF3. Motif analysis demonstrated that two of the SRSF3 recognition sequences were the same as the motifs identified in mouse embryonic stem cells, suggesting the recognition sequences of SRSF3 may be conserved in mammals. Overall, our analyses revealed the RNA targets of SRSF3 and uncovered its RNA recognition specificity, providing a valuable resource for understanding the function of SRSF3 in human embryonic stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.09.019 | DOI Listing |
Clin Transplant
September 2025
Centro De Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.
STAR Protoc
September 2025
UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; UCLA Environmental and Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA
Exposure systems to study the effects of environmental exposures can be costly to purchase and difficult to use. Here, we present an accessible and cost-effective approach to building an exposure chamber in the lab. We describe steps for constructing the exposure system and writing the code to run it and simple instructions for experiments using the system.
View Article and Find Full Text PDFJ Clin Invest
September 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.
View Article and Find Full Text PDFRNA Biol
September 2025
Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea.
Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
School of Medicine, Chongqing University, Chongqing 400044, China.
Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.
View Article and Find Full Text PDF