Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fabrication of multifunctional porous fibers with excellent mechanical properties has attracted abundant attention in the fields of personal thermal management textiles and smart wearable devices. However, the high cost and harsh preparation environment of the traditional solution-solvent phase separation method for making porous fibers aggravates the problems of resource consumption and environmental pollution. Herein, a microextrusion process that combines environmentally friendly CO physical foaming with fused deposition modeling technology is proposed, via the dual features of high gas uptake and restricted cell growth, to implement the continuous production of porous polyetheretherketone (PEEK) fibers with a production efficiency of 10.5 cm s . The porous PEEK fiber exhibits excellent stretchability (234.8% strain) and good high-temperature thermal insulation property. The open-cell structure on the surface is favorable for the adsorption to achieve superhydrophobicity (154.4°) and high-efficiency photocatalytic degradation of rhodamine B (90.4%). Moreover, the parameterized controllability of the cell structure is beneficial to widening the multifunctional window. In short, the first porous PEEK physical foaming fiber, which opens up a new avenue for the application expansion, especially in the medical field, is realized.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202100463DOI Listing

Publication Analysis

Top Keywords

multifunctional porous
8
porous polyetheretherketone
8
porous fibers
8
physical foaming
8
porous peek
8
porous
6
robust multifunctional
4
polyetheretherketone fiber
4
fiber fabricated
4
fabricated microextrusion
4

Similar Publications

Theoretical simulation-guided design and fabrication of molecularly imprinted hydrogels for selective osteopontin separation.

Food Res Int

November 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. Electronic address:

Osteopontin (OPN), a multifunctional milk protein essential for bioactive functions, remains challenging to isolate efficiently due to the limited specificity of conventional methods. We developed hydrogel-based molecularly imprinted membranes (MIMs) for selective OPN recognition. Dimethylaminopropyl methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM) were selected as functional monomers based on molecular docking and molecular dynamics (MD) simulations, ensuring optimized binding interactions.

View Article and Find Full Text PDF

Electrochemical sensors capable of detecting different types of biomolecules using a single electrode are highly desirable for simplifying analytical platforms and expanding their practical applicability. Herein, we develop a multifunctional electrochemical sensor based on a 3D honeycomb-like porous rGO/PPy-POM composite film for the independent detection of dopamine (DA) and folic acid (FA), two chemically distinct and clinically relevant biomolecules. The electrode is fabricated through a facile, low-cost, and environmentally friendly breath figure method to create a 3D porous reduced graphene oxide (rGO) framework, followed by codeposition of polypyrrole (PPy) and polyoxometalates (POMs).

View Article and Find Full Text PDF

In this study, a novel hybrid hydrogel incorporating a scandium-based metal-organic framework (scandium-integrated MOF-hydrogel hybrid) was developed using scandium nitrate, 1,4-naphthalenedicarboxylic acid, oxidized pectin, and chitosan. The synthesized scandium-integrated MOF-hydrogel hybrid demonstrated remarkable dual-functionality in both the adsorption of hazardous dye pollutants and the inhibition of pathogenic bacteria commonly found in wastewater. Characterization of the scandium-integrated MOF-hydrogel hybrid was performed using FT-IR, XRD, SEM, EDAX, CHNO elemental, BET, and XPS analyses, confirming successful MOF integration and a porous, reactive surface.

View Article and Find Full Text PDF

The scalable fabrication of high performance dyes desalination loose nanofiltration (LNF) membrane through facile thermal annealing remains challenging due to the susceptible pore collapse. Herein, we have developed a metal ion mediated sub-Tg thermal crosslinking protocol, which can convert the phase inverted reactive polymeric ultrafiltration substrate into LNF membrane showing high permselectivity as well as resistance to both extremely acid and alkaline solution. The original ultrafiltration substrate was composed of scalable-produced reactive polyarylene ether amidoxime (PEA) that was pre-crosslinked with ferric ions.

View Article and Find Full Text PDF

Stable, treatment-resistant Cu complexes in practical wastewater are frequently neglected. Positively charged lysozyme amyloid fibrils (AF), however, exhibit unexplored potential for their adsorption. This study engineered an amyloid fibril-chitosan composite (AF-CS) xerogel and evaluated its adsorption performance in three systems: free Cu, Cu-Citrate binary, and Cu-EDTA binary.

View Article and Find Full Text PDF