98%
921
2 minutes
20
Growing evidence suggests that hypertension and aging are prominent risk factors for the development of late-onset Alzheimer's disease (LOAD) by inducement of neuroinflammation. Recent study showed that neuroinflammation activated microglia induces reactive astrocytes, termed A1 astrocytes, that highly upregulate numerous classical complement cascade genes that are destructive to neurons in neurodegeneration diseases. Moreover, triggering receptor expressed on myeloid cells 2 (TREM2) is considered as one of the strongest single-allele genetic risk factors and plays important roles in neuroinflammation for LOAD. However, the mechanisms of microglia in the regulation of A1 astrocytic activation are still not clear. We introduced angiotensin II-induced hypertension in middle-aged mice and found that hypertension-upregulated TREM2 expression and A1 astrocytic activation were involved in neuroinflammation in the animal models used in this study. The results revealed that overexpression of microglial TREM2 not only mitigated microglial inflammatory response but also had salutary effects on reverse A1 astrocytic activation and neuronal toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417947 | PMC |
http://dx.doi.org/10.3389/fnagi.2021.716917 | DOI Listing |
J Anat
September 2025
Department of Anatomy and Cell Biology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan.
The white matter of the spinal cord is essential for sensory and motor signaling, and its proper development is crucial for establishing functional neuronal circuits. However, the mechanisms underlying white matter formation remain incompletely understood. We hypothesized that the extracellular matrix, particularly laminins, plays a key role in this process.
View Article and Find Full Text PDFExp Neurol
September 2025
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA. Electronic address:
Synapse refinement through the elimination of excess synapses is crucial for proper neuronal circuitry during development and adulthood, and the phagocytic activity of astrocytes plays an important role in this process. Failure to remove excess synapses can lead to neurological and neurodevelopmental disorders like epilepsy and autism spectrum disorder (ASD). The adhesion G protein-coupled receptor BAI1/ADGRB1 contributes to phagocytosis in various tissues, including the clearance of apoptotic myoblasts in skeletal muscle and epithelial cells in the intestine.
View Article and Find Full Text PDFPLoS Pathog
September 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Neuroinflammation within the central nervous system (CNS) is recognized as a critical pathological process in meningitic Escherichia coli (E. coli) infection, leading to severe neurodegenerative disorders and long-term sequelae. Astrocyte reactivity plays a pivotal role in driving the neuroinflammatory cascade in response to pathological stimuli from peripheral sources or other cellular components of the CNS.
View Article and Find Full Text PDFNat Commun
September 2025
Shanghai Yao Yuan Biotechnology Ltd (Drug Farm), Shanghai, China.
ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDF