98%
921
2 minutes
20
In this study, we developed a bioanalytical method using liquid chromatography coupled to triple quadrupole tandem mass spectrometry (LC-MS/MS) to apply to a pharmacokinetic study of inotodiol, which is known for its anti-cancer activity. Plasma samples were prepared with alkaline hydrolysis, liquid-liquid extraction, and solid-phase extraction. Inotodiol was detected in positive mode with atmospheric pressure chemical ionization by multiple-reaction monitoring mode using LC-MS/MS. The developed method was validated with linearity, accuracy, and precision. Accuracy ranged from 97.8% to 111.9%, and the coefficient of variation for precision was 1.8% to 4.4%. The developed method was applied for pharmacokinetic study, and the mean pharmacokinetic parameters administration were calculated as follows: λ 0.016 min; T 49.35 min; C 2582 ng/mL; Cl 0.004 ng/min; AUC 109,500 ng×min/mL; MRT 32.30 min; Vd 0.281 mL after intravenous administration at dose of 2 mg/kg and λ 0.005 min; T 138.6 min; T 40 min; C 49.56 ng/mL; AUC 6176 ng×in/mL; MRT 103.7 min after oral administration. The absolute oral bioavailability of inotodiol was 0.45%, similar to nonpolar phytosterols. Collectively, this is the first bioanalytical method and pharmacokinetic study for inotodiol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401913 | PMC |
http://dx.doi.org/10.3390/plants10081631 | DOI Listing |
Mol Pharm
September 2025
Johnson & Johnson, Translational PK/PD & Investigational Toxicology, Spring House, Pennsylvania 19002, United States.
Human intestinal permeability is a key determinant of the oral fraction absorbed () of active pharmaceutical ingredients (APIs). This study evaluated the ability of an in-house canine Mdr1 (cMdr1) knockout (KO) Madin-Darby Canine Kidney (MDCK) cell line to correlate apparent permeability () with human small intestinal permeability (). values of 16 reference compounds with high, medium, or low permeabilities were measured in the in-house cMdr1 KO MDCK protocol under pH gradient (6.
View Article and Find Full Text PDFDrug Deliv Transl Res
September 2025
Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India.
Diabetes is a metabolic disorder of increasing global concern. Characterized by constantly elevated levels of glucose, severe β-cell dysfunction, and insulin resistance, it is the cause of a major burden on patients if not managed with therapeutic and lifestyle changes. The human body is slowly developing tolerance to many marketed antidiabetic drugs and the quest for the discovery of newer molecules continues.
View Article and Find Full Text PDFBioorg Chem
September 2025
Department of Medicinal Chemistry, Shandong Key Laboratory of Druggability Optimization and Evaluation for Lead Compounds, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China. Electronic address:
A series of novel 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives were rationally designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their antibiotic potentiating effects, followed by evaluation of Nile Red efflux inhibition, and off-target effects including activity on the outer and inner bacterial membranes. Ten compounds potentiated antibiotic activity at sub-inhibitory concentrations, reducing the minimum inhibitory concentrations (MICs) of at least one of the tested antibiotics by at least 8-fold, with three derivatives (7c, 11g, and 11i) achieving 32-fold MIC reductions at 128 μg/mL.
View Article and Find Full Text PDFBioorg Chem
August 2025
Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Cancer Hospital, Hangzhou 310022, PR China. Electronic address:
Transcriptional enhanced associate domain (TEAD), overexpressed in hepatocellular carcinoma (HCC) and inversely correlated to prognosis, has emerged as a promising target for HCC therapy. To date, no small-molecule inhibitors targeting TEAD have been reported for HCC treatment. In this study, a bioinformatic analysis has been performed and has demonstrated that TEAD is a promising target for therapeutic intervention in HCC.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Clinical Resea
Kidney transplantation (KT) is an effective treatment for end-stage renal disease, with over 90 % of recipients requiring lifelong tacrolimus (Tac). However, The Tac pharmacokinetics exhibit high intra-patient variability (IPV), posing significant challenges. This study included 102 KT recipients at our center from October 2022 to December 2023.
View Article and Find Full Text PDF