Chemerin promotes the pathogenesis of preeclampsia by activating CMKLR1/p-Akt/CEBPɑ axis and inducing M1 macrophage polarization.

Cell Biol Toxicol

Department of Reproductive Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangcheng District, Xiangyang, 441021, Hubei Province, People's Republic of China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A higher ratio of M1/M2 macrophages and an elevated chemerin level are both related to increased risk of preeclampsia. However, the crosstalk between these two events and their collective contribution to preeclampsia are not well understood. In this study, we assessed the impacts of chemerin chemokine-like receptor 1 (CMKLR1)/p-Akt/CEBPα axis in regulating macrophage polarization and mediating the pathogenic effects of chemerin on preeclampsia. We showed that chemerin, in a dose- and time-dependent manner, stimulated M1 macrophage polarization, inhibited macrophage-induced trophoblast invasion and migration, and suppressed macrophage-mediated angiogenesis. All these chemerin-induced phenotypes are essentially mediated by sequentially CMKLR1, Akt activation, and CEBPα. Mechanistically, CEBPα acted as a transcriptional activator for both IRF8 and chemerin. In vivo, chemerin aggravated preeclampsia, while α-NETA, an inhibitor for CMKLR1, significantly suppressed M1 macrophage polarization and alleviated preeclampsia. In summary, chemerin, by activating CMKLR1/Akt/CEBPα axis, forms a positive feedback loop, promotes M1 macrophage polarization, suppresses trophoblast migration/invasion and angiogenesis, and contributes to preeclampsia. Therefore, targeting chemerin signaling may benefit the prevention and/or treatment of preeclampsia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10565-021-09636-7DOI Listing

Publication Analysis

Top Keywords

macrophage polarization
20
chemerin
9
preeclampsia
8
macrophage
5
polarization
5
chemerin promotes
4
promotes pathogenesis
4
pathogenesis preeclampsia
4
preeclampsia activating
4
activating cmklr1/p-akt/cebpɑ
4

Similar Publications

The effect of CD40 agonist antibody therapy on the pancreatic cancer microenvironment.

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Gastroenterology, Jinhua Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China.

The fourth leading cause of cancer-related fatalities in the USA is pancreatic ductal adenocarcinoma (PDAC), a particularly deadly illness that is resistant to immunotherapy. One of the Main Obstacles in cancer research is developing better treatments for PDAC, which has the lowest 5-year survival rate of any malignancy. Anti-CTLA-4, anti-PD-L1, and anti-PD-1 immune checkpoint blockade medications also have poor results in these patients, which may indicate the presence of other immunosuppressive mechanisms in the pancreatic tumor microenvironment (TME).

View Article and Find Full Text PDF

This study aimed to investigate the therapeutic effects of Sini Decoction on a murine model of peripheral arterial disease (PAD) and to explore its potential mechanisms of action related to mitochondrial autophagy and M1 macrophage polarization. A total of 36 specific-pathogen-free Kunming mice were used to establish a PAD model and were randomly assigned into four groups: the experimental group (EG, administered Sini Decoction via gavage), the control group (CG, administered rapamycin via gavage), the model group (MG, administered 0.9% sodium chloride solution via gavage), and the normal group (NG, administered 0.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF

Over the past few decades, liver disease has emerged as one of the leading causes of death worldwide. Liver injury is frequently associated with infections, alcohol consumption, or obesity, which trigger hepatic inflammation and ultimately lead to progressive fibrosis and carcinoma. Although various cell populations contribute to inflammatory and fibrogenic processes in the liver, macrophages serve as a pivotal mediator.

View Article and Find Full Text PDF

Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.

View Article and Find Full Text PDF