Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prognostication for patients with cancer is important for clinical planning and management, but remains challenging given the large number of factors that can influence outcomes. As such, there is a need to identify features that can robustly predict patient outcomes. We evaluated 8608 patient tumor samples across 16 cancer types from The Cancer Genome Atlas and generated distinct survival classifiers for each using clinical and histopathological data accessible to standard oncology workflows. For cancers that had poor model performance, we deployed a random-forest-embedded sequential forward selection approach that began with an initial subset of the 15 most predictive clinicopathological features before sequentially appending the next most informative gene as an additional feature. With classifiers derived from clinical and histopathological features alone, we observed cancer-type-dependent model performance and an area under the receiver operating curve (AUROC) range of 0.65 to 0.91 across all 16 cancer types for 1- and 3-year survival prediction, with some classifiers consistently outperforming those for others. As such, for cancers that had poor model performance, we posited that the addition of more complex biomolecular features could enhance our ability to prognose patients where clinicopathological features were insufficient. With the inclusion of gene expression data, model performance for 3 select cancers (glioblastoma, stomach/gastric adenocarcinoma, ovarian serous carcinoma) markedly increased from initial AUROC scores of 0.66, 0.69, and 0.67 to 0.76, 0.77, and 0.77, respectively. As a whole, this study provides a thorough examination of the relative contributions of clinical, pathological, and gene expression data in predicting overall survival and reveals cancer types for which clinical features are already strong predictors and those where additional biomolecular information is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330450PMC
http://dx.doi.org/10.1177/11769351211035137DOI Listing

Publication Analysis

Top Keywords

model performance
16
gene expression
12
cancer types
12
clinical histopathological
8
cancers poor
8
poor model
8
clinicopathological features
8
expression data
8
features
7
cancer
5

Similar Publications

Region-guided attack on the segment anything model.

Neural Netw

September 2025

School of Electronic Science and Engineering, Nanjing University, China. Electronic address:

The Segment Anything Model (SAM) is a cornerstone of image segmentation, demonstrating exceptional performance across various applications, particularly in autonomous driving and medical imaging, where precise segmentation is crucial. However, SAM is vulnerable to adversarial attacks that can significantly impair its functionality through minor input perturbations. Traditional techniques, such as FGSM and PGD, are often ineffective in segmentation tasks due to their reliance on global perturbations that overlook spatial nuances.

View Article and Find Full Text PDF

Inter-modality feature prediction through multimodal fusion for 3D shape defect detection.

Neural Netw

September 2025

School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.

3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.

View Article and Find Full Text PDF

Self-supervised representation learning with continuous training data improves the feel and performance of myoelectric control.

Comput Biol Med

September 2025

Department of Electrical and Computer Engineering and the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada.

Pattern recognition-based myoelectric control is traditionally trained with static or ramp contractions, but this fails to capture the dynamic nature of real-world movements. This study investigated the benefits of training classifiers with continuous dynamic data, encompassing transitions between various movement classes. We employed both conventional (LDA) and deep learning (LSTM) classifiers, comparing their performance when trained with ramp data, continuous dynamic data, and an LSTM pre-trained with a self-supervised learning technique (VICReg).

View Article and Find Full Text PDF

Background: Unsupervised cognitive assessments are becoming commonly used in studies of aging and neurodegenerative diseases. As assessments are completed in everyday environments and without a proctor, there are concerns about how common distractions may impact performance and whether these distractions may differentially impact those experiencing the earliest symptoms of dementia.

Objective: We examined the impact of self-reported interruptions, testing location, and social context during testing on remote cognitive assessments in older adults.

View Article and Find Full Text PDF

Background: Primary liver cancer, particularly hepatocellular carcinoma (HCC), poses significant clinical challenges due to late-stage diagnosis, tumor heterogeneity, and rapidly evolving therapeutic strategies. While systematic reviews and meta-analyses are essential for updating clinical guidelines, their labor-intensive nature limits timely evidence synthesis.

Objective: This study proposes an automated literature screening workflow powered by large language models (LLMs) to accelerate evidence synthesis for HCC treatment guidelines.

View Article and Find Full Text PDF