98%
921
2 minutes
20
Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor-associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice. Approach and Results: To induce diet-induced obesity and adipose tissue inflammation, wild-type or Traf5-/- mice consumed a high-fat diet for 18 weeks. Traf5-/- mice showed an increased weight gain, impaired insulin tolerance, and increased fasting blood glucose. Weight of livers and peripheral fat pads was increased in Traf5-/- mice, whereas lean tissue weight and growth were not affected. Flow cytometry of the stromal vascular fraction of visceral adipose tissue from Traf5-/- mice revealed an increase in cytotoxic T cells, CD11c+ macrophages, and increased gene expression of proinflammatory cytokines and chemokines. At the level of cell types, expression of TNF[alpha], MIP (macrophage inflammatory protein)-1[alpha], MCP (monocyte chemoattractant protein)-1, and RANTES (regulated on activation, normal T-cell expressed and secreted) was significantly upregulated in Traf5-deficient adipocytes but not in Traf5-deficient leukocytes from visceral adipose tissue. Finally, Traf5 expression was lower in adipocytes from obese patients and mice and recovered in adipose tissue of obese patients one year after bariatric surgery. Conclusions: We show that a genetic deficiency of TRAF5 in mice aggravates diet-induced obesity and its metabolic derangements by a proinflammatory response in adipocytes. Our data indicate that TRAF5 may promote anti-inflammatory and obesity-preventing signaling events in adipose tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.121.316677 | DOI Listing |
Obesity (Silver Spring)
September 2025
Laboratorio de Neurociencia Sensorial, Perceptual y Cognitiva, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile.
In recent years, it has been suggested that the development of obesity could affect the auditory system, altering its functionality and its ability to process sound. However, little research exists on the molecular and physiological mechanisms underlying this relationship, especially in humans. This narrative review aims to highlight the research supporting the role of obesity as both an independent risk factor for hearing loss and as a condition that may exacerbate age-related hearing loss, providing an analysis of the molecular mechanisms underlying these processes.
View Article and Find Full Text PDFMol Metab
September 2025
Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. Electronic address:
Background And Objective: Connexin43 (Cx43), encoded by Gja1, forms gap junctions between adjacent cells. In adipose tissue, it is upregulated during adipose beiging while downregulated by high-fat-diet (HFD) feeding. Adipocyte-specific Gja1 overexpression enhances adipose tissue beiging in response to mild cold stress of room temperature.
View Article and Find Full Text PDFJ Nutr Biochem
September 2025
Department of Woman-Mother-Child, Division of Pediatrics, DOHaD Laboratory, University of Lausanne and Lausanne University Hospital, 1011 Lausanne, Switzerland. Electronic address:
Background: Individuals born after intrauterine growth restriction (IUGR) have a higher risk of developing metabolic syndrome (MetS) in adulthood. In a rat model, male IUGR offspring exhibit MetS features-including elevated systolic blood pressure, glucose intolerance, non-alcoholic fatty liver disease, and increased visceral adipose tissue (VAT)-by 6 months of age. Female offspring, however, do not.
View Article and Find Full Text PDFExp Cell Res
September 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City 610041, China. Electronic address:
Adipose-derived mesenchymal stem cells (ADSCs) hold great promise for bone tissue repair and regeneration. Circular RNAs (circRNAs) play a crucial role in regulating the osteogenic differentiation and bone remodeling of ADSCs; however, the underlying molecular mechanisms remain unclear. In this study, we conducted whole transcriptome sequencing (WTS) on ADSCs and constructed a competing endogenous RNA (ceRNA) regulatory network to identify the circTTC3/miR-205/mothers against decapentaplegic homolog 3 (Smad3) signaling axis.
View Article and Find Full Text PDFRedox Biol
August 2025
Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198, Lleida, Spain. Electronic address:
Mitochondria are dynamic systems adapted to the different cellular demands. In this context, it is hypothesized that lipids, and particularly fatty acids, are also affected by these adaptations and supported at transcriptional level. By analyzing seven mammalian organs from rats, covering the three germ layers and belonging to the four basic types of tissue, we evaluated the differences in the lipidome's fatty acid profiles, calculated fatty acid-derived parameters including susceptibility to lipid peroxidation, and estimated enzymatic activity.
View Article and Find Full Text PDF