Aims: Sirtuin 4 (SIRT4) is a mitochondrially-localized stress-responsive NAD-dependent deacetylase predominantly regulating energy metabolism and reactive oxygen species (ROS) homeostasis. Overexpression of SIRT4 aggravates angiotensin-induced cardiac hypertrophy, however underlying mechanisms remain incompletely elucidated. To current study was designed to explore mechanisms underlying adverse effects of increased SIRT4 levels in the heart following pressure overload.
View Article and Find Full Text PDFFibrosis, cardiac remodelling, and inflammation are hallmarks of heart failure. To date, there is no available pharmacological cure for heart failure, but mechanical unloading by implantation of a left ventricular assist device (LVAD) can lead to improved cardiac function in a subset of patients. This study aimed to identify the transcriptional response of left ventricular (LV) cardiac myocytes to mechanical unloading in a mouse model of reversible LV pressure overload and in failing human hearts after LVAD implantation.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Background And Aims: Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in cholesterol homeostasis by regulating low-density lipoprotein (LDL) receptor levels. Despite its known effects on cholesterol metabolism, the role of PCSK9 in cardiac function, especially post-myocardial infarction (MI), remains unclear. This study investigates the impact of PCSK9 on heart function post-MI and evaluates the effects of PCSK9 inhibition via Alirocumab.
View Article and Find Full Text PDFObjective: Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice.
View Article and Find Full Text PDFMicroRNAs are key regulators of the cardiac response to injury. MiR-100 has recently been suggested to be involved in different forms of heart failure, but functional studies are lacking. In the present study, we examined the impact of transgenic miR-100 overexpression on cardiac structure and function during physiological aging and pathological pressure-overload-induced heart failure in mice after transverse aortic constriction surgery.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2021
Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor-associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2019
Decreased serum adiponectin levels in type 2 diabetes has been linked to the onset of mitochondrial dysfunction in diabetic complications by impairing AMPK-SIRT1-PGC-1α signaling via impaired adiponectin receptor 1 (AdipoR1) signaling. Here, we aimed to characterize the previously undefined role of disrupted AdipoR1 signaling on the mitochondrial protein composition of cardiac, renal, and hepatic tissues as three organs principally associated with diabetic complications. Comparative proteomics were performed in mitochondria isolated from the heart, kidneys and liver of mice.
View Article and Find Full Text PDFBackground: Sepsis-induced cardiomyopathy contributes to the high mortality of septic shock in critically ill patients. Since the underlying mechanisms are incompletely understood, we hypothesized that sepsis-induced impairment of sirtuin 3 (SIRT3) activity contributes to the development of septic cardiomyopathy.
Methods And Results: Treatment of mice with lipopolysaccharide (LPS) for 6 h resulted in myocardial NAD depletion and increased mitochondrial protein acetylation, indicating impaired myocardial SIRT3 activity due to NAD depletion.
Background: Platelets store large amounts of serotonin that they release during thrombus formation or acute inflammation. This facilitates hemostasis and modulates the inflammatory response.
Methods: Infarct size, heart function, and inflammatory cell composition were analyzed in mouse models of myocardial reperfusion injury with genetic and pharmacological depletion of platelet serotonin.
Genetic factors are known to modulate cardiac susceptibility to ventricular hypertrophy and failure. To determine how strain influences the transcriptional response to pressure overload-induced heart failure (HF) and which of these changes accurately reflect the human disease, we analyzed the myocardial transcriptional profile of mouse strains with high (C57BL/6J) and low (129S1/SvImJ) susceptibility for HF development, which we compared to that of human failing hearts. Following transverse aortic constriction (TAC), C57BL/6J mice developed overt HF while 129S1/SvImJ did not.
View Article and Find Full Text PDFFunctional defects in mitochondrial biology causally contribute to various human diseases, including cardiovascular disease. Impairment in oxidative phosphorylation, mitochondrial oxidative stress, and increased opening of the mitochondrial permeability transition pore add to the underlying mechanisms of heart failure or myocardial ischemia-reperfusion (IR) injury. Recent evidence demonstrated that the mitochondrial NAD-dependent deacetylase sirtuin 3 (SIRT3) may regulate these mitochondrial functions by reversible protein lysine deacetylation.
View Article and Find Full Text PDFCan J Physiol Pharmacol
January 2016
Lack of the mitochondrial deacetylase sirtuin 3 (SIRT3) impairs mitochondrial function and increases the susceptibility to induction of the mitochondrial permeability transition pore. Because these alterations contribute to myocardial ischemia-reperfusion (IR) injury, we hypothesized that SIRT3 deficiency may increase cardiac injury following myocardial IR. Hearts of 10-week-old mice were perfused in the isolated working mode and subjected to 17.
View Article and Find Full Text PDFBasic Res Cardiol
February 2016
Hypoadiponectinemia is an independent predictor of cardiovascular disease, impairs mitochondrial function in skeletal muscle, and has been linked to the pathogenesis of Type 2 diabetes. In models of Type 2 diabetes, myocardial mitochondrial function is impaired, which is improved by increasing serum adiponectin levels. We aimed to define the roles of adiponectin receptor 1 (AdipoR1) and 2 (AdipoR2) in adiponectin-evoked regulation of mitochondrial function in the heart.
View Article and Find Full Text PDFBasic Res Cardiol
February 2016
Sirtuin 3 (SIRT3) is a mitochondrial NAD(+)-dependent deacetylase that regulates energy metabolic enzymes by reversible protein lysine acetylation in various extracardiac tissues. The role of SIRT3 in myocardial energetics and in the development of mitochondrial dysfunction in cardiac pathologies, such as the failing heart, remains to be elucidated. To investigate the role of SIRT3 in the regulation of myocardial energetics and function SIRT3(-/-) mice developed progressive age-related deterioration of cardiac function, as evidenced by a decrease in ejection fraction and an increase in enddiastolic volume at 24 but not 8 weeks of age using echocardiography.
View Article and Find Full Text PDFAdiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart.
View Article and Find Full Text PDFGlutathione-S-transferases (GSTs) are upregulated in malignant gliomas and contribute to their chemoresistance. The nitric oxide (NO) donor PABA/NO (O(2) -{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) generates NO upon selective enzymatic activation by GST-π-inducing selective biological effects in tumors. Tumor cell killing and chemosensitization were observed in a variety of tumors after exposure to GST-activated NO donor drugs.
View Article and Find Full Text PDF