A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Myocardial mitochondrial dysfunction in mice lacking adiponectin receptor 1. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypoadiponectinemia is an independent predictor of cardiovascular disease, impairs mitochondrial function in skeletal muscle, and has been linked to the pathogenesis of Type 2 diabetes. In models of Type 2 diabetes, myocardial mitochondrial function is impaired, which is improved by increasing serum adiponectin levels. We aimed to define the roles of adiponectin receptor 1 (AdipoR1) and 2 (AdipoR2) in adiponectin-evoked regulation of mitochondrial function in the heart. In isolated working hearts in mice lacking AdipoR1, myocardial oxygen consumption was increased without a concomitant increase in cardiac work, resulting in reduced cardiac efficiency. Activities of mitochondrial oxidative phosphorylation (OXPHOS) complexes were reduced, accompanied by reduced OXPHOS protein levels, phosphorylation of AMP-activated protein kinase, sirtuin 1 activity, and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signaling. Decreased ATP/O ratios suggested myocardial mitochondrial uncoupling in AdipoR1-deficient mice, which was normalized by lowering increased mitochondrial 4-hydroxynonenal levels following treatment with the mitochondria-targeted antioxidant Mn (III) tetrakis (4-benzoic acid) porphyrin. Lack of AdipoR2 did not impair mitochondrial function and coupling in the heart. Thus, lack of AdipoR1 impairs myocardial mitochondrial function and coupling, suggesting that impaired AdipoR1 signaling may contribute to mitochondrial dysfunction and mitochondrial uncoupling in Type 2 diabetic hearts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00395-015-0495-4DOI Listing

Publication Analysis

Top Keywords

mitochondrial function
20
myocardial mitochondrial
16
mitochondrial
10
mitochondrial dysfunction
8
mice lacking
8
adiponectin receptor
8
type diabetes
8
mitochondrial uncoupling
8
function coupling
8
myocardial
5

Similar Publications