98%
921
2 minutes
20
Herein, FePS/reduced graphene oxide heterostructure has been prepared via a typical hydrothermal process, and flexible photodetectors based on hybrids have been subsequently fabricated. The photoresponse measurement results demonstrate that the photodetector exhibits obvious photoelectric conversion behavior without applied potential, indicating that the device possesses the capability to be self-powered. In addition, the photocurrent density of the as-fabricated photodetectors reaches up to 125 nA cmunder 90 mW cmillumination intensity without an external power source, which is 5.86 times higher than single FePS-based devices. Furthermore, the maximum attenuation in photocurrent density of the as-fabricated flexible photodetectors measured at -0.3 V after different bending cycles and bending angles is 29.8% and 17.7%, respectively. These results demonstrate that the as-fabricated photodetectors have excellent flexibility and provide a simple and effective strategy for the construction of flexible photodetectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac1719 | DOI Listing |
ACS Nano
September 2025
School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Superlinear photodetectors hold significant potential in intelligent optical detection systems, such as near-field imaging. However, their current realization imposes stringent requirements on photosensitive materials, thereby limiting the flexibility of the device integration for practical applications. Herein, a tunable superlinear GaO deep-ultraviolet gate-all-around (GAA) phototransistor based on a p-n heterojunction has been proposed.
View Article and Find Full Text PDFAdv Mater
September 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.
The exponential growth of data in the information era has pushed conventional optical communication technology to its limitations, including inefficient spectral utilization, slow data rate, and inherent security vulnerabilities. Here, a transformative high-speed organic spectral wireless communication (SWC) technology enabled by a flexible, miniaturized, and high-performance organic hyperspectrometer is proposed that integrates ultrahigh-speed data transmission with hardware-level encryption. By synergistically combining organic photodetector arrays with tunable responsivities and spectral-tunable organic filters, the organic hyperspectrometer achieves a broad spectral detection range of 400 to 900 nm, resolution of 1.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China.
Near-infrared (NIR) detectors, serving as critical technological nodes bridging microscopic molecular recognition and macroscopic intelligent perception, meet the demands of cutting-edge technologies such as multispectral imaging. Organic semiconductor materials demonstrate unique advantages for NIR organic photodetectors (OPDs) due to their precisely tunable bandgaps, solution processability, flexibility compatibility, and biocompatibility. However, the narrow-bandgap intrinsic characteristics required for NIR response inevitably lead to carrier concentration surge that exponentially increases dark current, while hot carriers undergo phonon scattering relaxation that suppresses carrier collection.
View Article and Find Full Text PDFQuasi-two-dimensional (quasi-2D) perovskites hold promise for flexible optoelectronics but suffer from mechanical brittleness. Here, we enhance their flexibility by incorporating a styrene-ethylene-butylene-styrene (SEBS) triblock copolymer during antisolvent-assisted crystallization. The resulting composite films exhibit ~100× lower Young's modulus and wrinkled morphologies that boost light absorption.
View Article and Find Full Text PDFBiosensors (Basel)
August 2025
Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
Photoelectrochemical (PEC) sensors have garnered increasing attention due to their high sensitivity, low background signal, and rapid response. The incorporation of hydrogels into PEC platforms has significantly expanded their analytical capabilities by introducing features such as biocompatibility, tunable porosity, antifouling behavior, and mechanical flexibility. This review systematically categorizes hydrogel materials into four main types-nucleic acid-based, synthetic polymer, natural polymer, and carbon-based-and summarizes their functional roles in PEC sensors, including structural support, responsive amplification, antifouling interface construction, flexible electrolyte integration, and visual signal output.
View Article and Find Full Text PDF