98%
921
2 minutes
20
Background: Stem cell transplantation is a fascinating therapeutic approach for the treatment of many neurodegenerative disorders; however, clinical trials using stem cells have not been as effective as expected based on preclinical studies. The aim of this study is to validate the hypothesis that human neural crest-derived nasal turbinate stem cells (hNTSCs) are a clinically promising therapeutic source of adult stem cells for the treatment of Alzheimer's disease (AD).
Methods: hNTSCs were evaluated in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) according to the effect of transplantation on AD pathology, including PET/CT neuroimaging, immune status indicated by microglial numbers and autophagic capacity, neuronal survival, and cognition, in a 5 × FAD transgenic mouse model of AD.
Results: We demonstrated that hNTSCs showed a high proliferative capacity and great neurogenic properties in vitro. Compared with hBM-MSC transplantation, hNTSC transplantation markedly reduced Aβ42 levels and plaque formation in the brains of the 5 × FAD transgenic AD mice on neuroimaging, concomitant with increased survival of hippocampal and cortex neurons. Moreover, hNTSCs strongly modulated immune status by reducing the number of microglia and the expression of the inflammatory cytokine IL-6 and upregulating autophagic capacity at 7 weeks after transplantation in AD models. Notably, compared with transplantation of hBM-MSCs, transplantation of hNTSCs significantly enhanced performance on the Morris water maze, with an increased level of TIMP2, which is necessary for spatial memory in young mice and neurons; this difference could be explained by the high engraftment of hNTSCs after transplantation.
Conclusion: The reliable evidence provided by these findings reveals a promising therapeutic effect of hNTSCs and indicates a step forward the clinical application of hNTSCs in patients with AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278635 | PMC |
http://dx.doi.org/10.1186/s13287-021-02489-1 | DOI Listing |
Crit Rev Immunol
January 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
January 2025
Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.
View Article and Find Full Text PDFBlood Adv
September 2025
Zhongnan Hospital of Wuhan University, Wuhan, China.
The role of inflammation in the regulation of acute myeloid leukemia (AML) and stressed hematopoiesis is significant, though the molecular mechanisms are not fully understood. Here, we found that mesenchymal stromal cells (MSCs) had dysregulated expression of the inflammatory cytokine S100A8 in AML. Upregulating S100A8 in MSCs increased the proliferation of AML cells in vitro.
View Article and Find Full Text PDFCornea
September 2025
Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA.
Purpose: To evaluate visual outcomes after bacterial keratitis (BK) and identify predictive factors for poor prognosis at a tertiary referral center in Southern California.
Methods: This is a cross-sectional retrospective review of patients' medical records with culture-positive BK at University of California Los Angeles from January 1, 2014, to December 31, 2019. Main outcome measure was change in best-corrected visual acuity (BCVA) at 12 weeks posttreatment.
Am J Respir Cell Mol Biol
September 2025
Univ. of Pennsylvania, Medicine, Philadelphia, Pennsylvania, United States.
Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).
View Article and Find Full Text PDF