Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Light pollution, or the presence of artificial light at night (ALAN), is among the fastest growing but least understood anthropogenic stressor on the planet. While historically light pollution has not received attention comparable to climate change or chemical pollution, research over the past several decades has revealed the plethora of negative effects on humans, animals, and supporting ecosystems. As light pollution continues to grow in spatial, spectral, and temporal extent, we recognize the urgent need to understand how this affects circadian physiology, organismal fitness, life history traits and tradeoffs, population trends, and community interactions. Here, we aim to highlight background and foundational evidence of the effects of light pollution to present context and the basis for early light pollution studies. Next, we touch on several understudied topics where research is underway to fill gaps in our knowledge and provide the basis for future research. Last, we focus on questions that are vital to understanding the effects of ALAN on diverse natural systems and discuss the barriers we face conducting research on light pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icb/icab157DOI Listing

Publication Analysis

Top Keywords

light pollution
28
light
8
effects light
8
pollution
8
diverse natural
8
natural systems
8
introduction symposium
4
effects
4
symposium effects
4
pollution diverse
4

Similar Publications

Fast-hyperspectral imaging remote sensing: Emission quantification of NO and SO from marine vessels.

Light Sci Appl

September 2025

Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.

Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.

View Article and Find Full Text PDF

Z-scheme Heterojunction on TS-1 Zeolite Boosting Ultrafast Visible-Light-Driven Degradation of Cr(VI) and Tetracycline.

Inorg Chem

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

Photocatalysis has emerged as a promising strategy to address water pollution caused by heavy metals and antibiotics. Zeolites exhibit significant potential in petrochemical catalysis; however, the development of zeolite-based photocatalysts remains a critical challenge for researchers. Herein, a novel Z-scheme heterojunction was designed and fabricated on the titanium-silicon zeolite TS-1 by modifying g-CN via a simple calcination process.

View Article and Find Full Text PDF

Artificial light at night disrupts fertility in Drosophila melanogaster.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

Occupational Health, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy. Electronic address:

Artificial light at night (ALAN) can disrupt numerous biological processes, and is increasingly studied in animal models. Here, we evaluated the impact of red and blue ALAN on Drosophila melanogaster, focusing on fertility, development, circadian rhythms, and gene expression. All results were compared to those of a control group maintained under a 12 h white light/12 h dark cycle.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF

CuCo-Layered Double Hydroxide Nanosheets Grown on Hierarchical Carbonized Wood as Bifunctional Electrode for Supercapacitor and Hydrogen Evolution Reaction.

Adv Sci (Weinh)

September 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.

View Article and Find Full Text PDF