98%
921
2 minutes
20
Shiga toxigenic Escherichia coli (STEC) is one of the most important food-borne zoonotic bacterial pathogens responsible for causing gastrointestinal infections, haemorrhagic colitis and haemolytic uremic syndrome. The present study was aimed to isolate and characterize STEC from neonatal dairy calves, animal handlers and their surrounding environment and to establish the genetic relationship among isolates by multilocus sequence typing (MLST). A total number of 115 samples were collected and processed for the isolation of E. coli. The occurrence rate of E. coli was 92.2% (106/115), of which, 18 were typed as STEC. Antibacterial susceptibility analysis revealed 11 (61.1%) strains as multiple drug-resistant (MDR). MLST analysis has delineated 16 sequence types (STs) including nine novel STs. Among STs, ST58 dominated with three strains and was recovered from the environment and neonatal calves. Strains from neonatal calves and humans showed genetic relatedness with significant bootstrap support values indicative of zoonotic transmission potentiality. Analysis of 211 global isolates belonging to 61 STs indicated predominant STs (ST 21, ST 33 and ST 3416) that can be either host-specific (ST 33 and ST 3416) or can be shared among human and bovine hosts (ST 21). The MLST analysis indicates genetic relatedness among isolates and the results predispose inter-host transmission and zoonotic spread.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578500 | PMC |
http://dx.doi.org/10.1007/s42770-021-00561-9 | DOI Listing |
Clin Transplant Res
September 2025
Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
Donor-derived cell-free DNA (dd-cfDNA) has emerged as a valuable noninvasive biomarker for detecting allograft injury in solid organ transplantation. It is released into the bloodstream from the transplanted organ as a result of cell injury and immune activation, with baseline levels influenced by organ type, tissue turnover, and posttransplant physiological changes. Several analytical platforms are available, including quantitative polymerase chain reaction (PCR), digital droplet PCR, and next-generation sequencing, each differing in sensitivity, throughput, and reporting format.
View Article and Find Full Text PDFInfect Disord Drug Targets
September 2025
Department of Microbiology, AIIMS, Jodhpur, India.
Introduction: Typhoid fever, caused by Salmonella Typhi and Paratyphi, remains a sig-nificant public health concern, particularly in developing countries. The emergence of antimicrobial resistance, including resistance to first-line drugs, fluoroquinolones, and the development of re-sistance to ceftriaxone, poses a significant threat to effective treatment.
Methods: This study investigated extended-spectrum β-lactamase (ESBL)-producing Salmonella Typhi isolates from blood samples of patients with suspected typhoid fever at a tertiary care hospital in Western Rajasthan, India, between April 2022 and May 2024.
Environ Microbiol
September 2025
Listeria: Biology and Infection Research Group (LisBio), Valencia, Spain.
Listeria monocytogenes is a saprophytic bacterium and a foodborne pathogen of humans and animals. Little is known about its distribution and genetic diversity across different environments within the same geographical region. We conducted a large-scale longitudinal study in southeastern Spain monitoring Listeria spp.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
Background: RUNX3 acts as a tumor suppressor gene in non-small-cell lung cancer (NSCLC), yet its specific biological mechanism is still unclear. This study aimed to uncover tumor microenvironment (TME) changes in NSCLC with varying RUNX3 expression statuses through single-cell RNA sequencing.
Patients And Methods: In total, seven patients with NSCLC with detailed pathological data were involved, with three both paracancerous and cancerous tissue samples.
Anal Chim Acta
November 2025
HIV-1 Molecular Epidemiology Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Microbiology Department, Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, 28034, Spain. Electronic address:
Background: Currently, 39.9 million people are infected with the human immunodeficiency virus (HIV), and 1.3 million new infections occur annually, with over 170 circulating variants.
View Article and Find Full Text PDF