98%
921
2 minutes
20
Donor-derived cell-free DNA (dd-cfDNA) has emerged as a valuable noninvasive biomarker for detecting allograft injury in solid organ transplantation. It is released into the bloodstream from the transplanted organ as a result of cell injury and immune activation, with baseline levels influenced by organ type, tissue turnover, and posttransplant physiological changes. Several analytical platforms are available, including quantitative polymerase chain reaction (PCR), digital droplet PCR, and next-generation sequencing, each differing in sensitivity, throughput, and reporting format. Commercial assays have been clinically validated across multiple organs. dd-cfDNA can be quantified as a percentage of total cell-free DNA or as an absolute concentration, with diagnostic thresholds varying by platform and organ type. Although dd-cfDNA demonstrates high negative predictive value and can reduce the need for unnecessary biopsies, it is not specific to rejection and may be elevated in the setting of infection, ischemia, or inflammation. Preanalytical and technical factors can also affect test performance. Therefore, dd-cfDNA should be interpreted with careful consideration of biological variation, assay characteristics, and the patient's clinical context. Future efforts should focus on defining organ-specific thresholds, improving interlaboratory standardization, expanding validation in underrepresented graft types, and assessing cost-effectiveness and clinical impact to support broader clinical adoption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4285/ctr.25.0045 | DOI Listing |
Curr Opin Infect Dis
August 2025
Transplant and Immunocompromised Host Infectious Diseases, Department of Medicine, Infectious Diseases Division, Massachusetts General Hospital.
Purpose Of Review: Plasma metagenomic next-generation sequencing (mNGS) enables detection of microbial cell-free deoxyribonucleic acid (mcfDNA) in blood without the need for culture or organism-specific primers. Here, we review clinical performance, methodological variability, and real-world application of plasma mNGS for infectious disease diagnosis in immunocompromised hosts (ICHs).
Recent Findings: Plasma mNGS has rapidly gained attention as a novel diagnostic tool for infections in ICHs, offering broad-range pathogen detection from a noninvasive blood sample.
Cell Mol Biol (Noisy-le-grand)
September 2025
Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara, Jalisco, México.
The objective of this study was to evaluate the concentration and integrity index of circulating cell-free DNA (ccf-DNA) as biomarkers for the detection and monitoring of minimal residual disease (MRD) in pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL). Comparison with a validated methodology for the quantification of monoclonal rearrangements of the IGH gene was made. Peripheral blood and bone marrow samples were collected from 10 pediatric patients with B-ALL at diagnosis, remission, and maintenance phases.
View Article and Find Full Text PDFFront Microbiol
August 2025
BIOASTER, Lyon, France.
We propose an innovative technology to classify the Mechanism of Action (MoA) of antimicrobials and predict their novelty, called HoloMoA. Our rapid, robust, affordable and versatile tool is based on the combination of time-lapse Digital Inline Holographic Microscopy (DIHM) and Deep Learning (DL). In combination with hologram reconstruction.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Advances in Oxford Nanopore Technologies (ONT) with the introduction of the r10.4.1 flow cell have reduced the sequencing error rates to <1%.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
BGI Research, Shenzhen 518083, China.
Next-generation sequencing has greatly advanced genomics, enabling large-scale studies of population genetics and complex traits. Genomic DNA (gDNA) from white blood cells has traditionally been the main data source, but cell-free DNA (cfDNA), found in bodily fluids as fragmented DNA, is increasingly recognized as a valuable biomarker in clinical and genetic studies. However, a direct comparison between cfDNA and gDNA has not been fully explored.
View Article and Find Full Text PDF