Deep supervised learning using self-adaptive auxiliary loss for COVID-19 diagnosis from imbalanced CT images.

Neurocomputing (Amst)

Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The outbreak and rapid spread of coronavirus disease 2019 (COVID-19) has had a huge impact on the lives and safety of people around the world. Chest CT is considered an effective tool for the diagnosis and follow-up of COVID-19. For faster examination, automatic COVID-19 diagnostic techniques using deep learning on CT images have received increasing attention. However, the number and category of existing datasets for COVID-19 diagnosis that can be used for training are limited, and the number of initial COVID-19 samples is much smaller than the normal's, which leads to the problem of class imbalance. It makes the classification algorithms difficult to learn the discriminative boundaries since the data of some classes are rich while others are scarce. Therefore, training robust deep neural networks with imbalanced data is a fundamental challenging but important task in the diagnosis of COVID-19. In this paper, we create a challenging clinical dataset (named COVID19-Diag) with category diversity and propose a novel imbalanced data classification method using deep supervised learning with a self-adaptive auxiliary loss (DSN-SAAL) for COVID-19 diagnosis. The loss function considers both the effects of data overlap between CT slices and possible noisy labels in clinical datasets on a multi-scale, deep supervised network framework by integrating the effective number of samples and a weighting regularization item. The learning process jointly and automatically optimizes all parameters over the deep supervised network, making our model generally applicable to a wide range of datasets. Extensive experiments are conducted on COVID19-Diag and three public COVID-19 diagnosis datasets. The results show that our DSN-SAAL outperforms the state-of-the-art methods and is effective for the diagnosis of COVID-19 in varying degrees of data imbalance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8180474PMC
http://dx.doi.org/10.1016/j.neucom.2021.06.012DOI Listing

Publication Analysis

Top Keywords

deep supervised
16
covid-19 diagnosis
16
covid-19
10
supervised learning
8
learning self-adaptive
8
self-adaptive auxiliary
8
auxiliary loss
8
imbalanced data
8
diagnosis covid-19
8
supervised network
8

Similar Publications

Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.

View Article and Find Full Text PDF

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective.

View Article and Find Full Text PDF

The spectacular success of training large models on extensive datasets highlights the potential of scaling up for exceptional performance. To deploy these models on edge devices, knowledge distillation (KD) is commonly used to create a compact model from a larger, pretrained teacher model. However, as models and datasets rapidly scale up in practical applications, it is crucial to consider the applicability of existing KD approaches originally designed for limited-capacity architectures and small-scale datasets.

View Article and Find Full Text PDF

Objective: To develop a deep learning method for fast and accurate prediction of Specific Absorption Rate (SAR) distributions in the human head to support real-time hyperthermia treatment planning (HTP) of brain cancer patients.

Approach: We propose an encoder-decoder neural network with cross-attention blocks to predict SAR maps from brain electrical properties, tumor 3D isocenter coordinates and microwave antenna phase settings. A dataset of 201 simulations was generated using finite-element modeling by varying tissue properties, tumor positions, and antenna phases within a human head model equipped with a three-ring phased-array applicator.

View Article and Find Full Text PDF