Publications by authors named "Dario B Rodrigues"

Previous work has reported the design of a novel thermobrachytherapy (TBT) balloon implant to deliver magnetic nanoparticle (MNP) hyperthermia and high-dose-rate (HDR) brachytherapy after brain tumor resection, thereby their synergistic effect. This paper presents an evaluation of the robustness of the balloon device, compatibility of its heat and radiation delivery components, as well as thermal and radiation dosimetry of the TBT balloon. TBT balloon devices with 1 and 3 cm diameter were evaluated when placed in an external magnetic field with a maximal strength of 8.

View Article and Find Full Text PDF

Purpose: Treatment planning for head-and-neck (H&N) cancer, in particular oropharynx, nasopharynx, and paranasal sinus cases, at our center requires noncoplanar proton beams due to the complexity of the anatomy and target location. Targeting accuracy for all beams is carefully evaluated by using image guidance before delivering proton beam therapy (PBT). In this study, we analyzed couch shifts to evaluate whether imaging is required before delivering each field with different couch angles.

View Article and Find Full Text PDF

Electromagnetic thermal therapies for cancer treatment, such as microwave hyperthermia, aim to heat up a targeted tumour site to temperatures within 40 and 44 °C. Computational simulations used to investigate such heating systems employ the Pennes' bioheat equation to model the heat exchange within the tissue, which accounts for several tissue properties: density, specific heat capacity, thermal conductivity, metabolic heat generation rate, and blood perfusion rate. We present a review of these thermal and physiological properties relevant for hyperthermia treatments of breast including fibroglandular breast, fatty breast, and breast tumours.

View Article and Find Full Text PDF

Background: The success of cancer hyperthermia (HT) treatments is strongly dependent on the temperatures achieved in the tumor and healthy tissues as it correlates with treatment efficacy and safety, respectively. Hyperthermia treatment planning (HTP) simulations have become pivotal for treatment optimization due to the possibility for pretreatment planning, optimization and decision making, as well as real-time treatment guidance.

Materials And Methods: The same computational methods deployed in HTP are also used for in silico studies.

View Article and Find Full Text PDF

Hyperthermia therapy (HT) is becoming a well-recognized method for the treatment of cancer when combined with radiation or chemotherapy. There are many ways to heat a tumor and the optimum approach depends on the treatment site. This study investigates a composite ferromagnetic surgical implant inserted in a tumor bed for the delivery of local HT.

View Article and Find Full Text PDF

Purpose: Chordoma is a locally aggressive tumor that most commonly affects the base of the skull/clivus, cervical, and sacral spine. Conventional radiotherapy (RT), cannot be safely increased further to improve disease control due to the risk of toxicity to the surrounding critical structures. Tumor-targeted hyperthermia (HT) combined with Proton Beam Radiation Therapy (PBRT) is known to act as a potent radiosensitizer in cancer control.

View Article and Find Full Text PDF

Aim: Hyperthermia (HT) has been shown to improve clinical response to radiation therapy (RT) for cancer. Synergism is dramatically enhanced if HT and RT are combined simultaneously, but appropriate technology to apply treatments together does not exist. This study investigates the feasibility of delivering HT with RT to a 5-10mm annular rim of at-risk tissue around a tumor resection cavity using a temporary thermobrachytherapy (TBT) balloon implant.

View Article and Find Full Text PDF

Purpose: Tumor response and treatment toxicity are related to minimum and maximum tissue temperatures during hyperthermia, respectively. Using a large set of clinical data, we analyzed the number of sensors required to adequately monitor skin temperature during superficial hyperthermia treatment of breast cancer patients.

Methods: Hyperthermia treatments monitored with >60 stationary temperature sensors were selected from a database of patients with recurrent breast cancer treated with re-irradiation (23 × 2 Gy) and hyperthermia using single 434 MHz applicators (effective field size 351-396 cm).

View Article and Find Full Text PDF

Melanoma is one of the most aggressive metastatic cancers with resistance to radiation and most chemotherapy agents. This study highlights an alternative treatment for melanoma based on nanosecond pulsed dielectric barrier discharge (nsP DBD). We show that a single nsP DBD treatment, directly applied to a 5 mm orthotopic mouse melanoma tumor, completely eradicates it 66% ( = 6; ≤ 0.

View Article and Find Full Text PDF

Purpose: Focused ultrasound (FUS) is a modality with rapidly expanding applications across the field of medicine. Treatment of bone lesions with FUS including both benign and malignant tumours has been an active area of investigation. Recently, as a result of a successful phase III trial, magnetic resonance-guided FUS is now a standardised option for treatment of painful bone metastases.

View Article and Find Full Text PDF

We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing.

View Article and Find Full Text PDF

This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differential surface/deep tissue temperatures for quantifying sensitivity to change in brain temperature independent of scalp and surrounding environment.

View Article and Find Full Text PDF

Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry.

View Article and Find Full Text PDF

Purpose: Novel combinations of heat with chemotherapeutic agents are often studied in murine tumour models. Currently, no device exists to selectively heat small tumours at depth in mice. In this project we modelled, built and tested a miniature microwave heat applicator, the physical dimensions of which can be scaled to adjust the volume and depth of heating to focus on the tumour volume.

View Article and Find Full Text PDF