98%
921
2 minutes
20
Finding the essential factors driving carbon emissions is vital for the carbon reduction policy-making. Different from the existing research, this paper studied the separate influence of internal and external input structural changes on global carbon emissions. We applied structural decomposition analysis (SDA) to decompose the global carbon emission change into six factors: namely, the carbon emission intensity, the domestic input structure, the international input structure, consumption pattern, consumption volume and population. The results firstly showed that the contributions of different factors to global carbon emissions changed over time. In recent five years, structural changes of domestic inputs became the principle driver of decrease in global carbon emissions. Secondly, the results showed that there were significant differences for countries in their factors for carbon emissions. In India and Russia, domestic input structural change was the major contributor to the decrease in carbon emissions. In Japan and Germany, the most important factor for the increase in carbon emissions was the international input structure. Finally, the results showed the factors for carbon emission changes were correlated to economic development. The international input structural changes significantly increased carbon emissions in high-income countries. Our findings suggested that some countries such as India and Russia, improving the usage efficiency of domestic carbon-intensive products would help reducing carbon emissions. For most high-income countries such as Japan and Germany, they should reduce the dependence on the imported carbon-intensive products by turning the external input sources to countries with technology advantages. In addition, technology exportation of high-income countries would also be beneficial for the global carbon reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.112942 | DOI Listing |
Macromol Biosci
September 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.
Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.
View Article and Find Full Text PDFJ Labelled Comp Radiopharm
September 2025
National Key Laboratory for the Development and Utilization of Forest Food Resources, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, China.
Carbon-11 (C)-labeled radiotracers are invaluable tools in positron emission tomography (PET), enabling real-time visualization of biochemical processes with high sensitivity and specificity. Among the various C synthons, cyclotron-produced [C]CO is a fundamental precursor, though its direct incorporation into complex molecules has traditionally been limited by its low reactivity, gaseous form, and short half-life. Recent advances in [C]CO fixation chemistry through both nonphotocatalytic and photocatalytic methods have significantly expanded its utility in the synthesis of structurally diverse compounds, including carboxylic acids, carbonates, carbamates, amides, and ureas.
View Article and Find Full Text PDFNurs Crit Care
September 2025
Department of Intensive Care Medicine, "La Paz" University Hospital, Madrid, Spain.
Background: The healthcare sector is a significant producer of greenhouse gas emissions, with intensive care units (ICUs) being major contributors. The environmental impact of medical waste largely depends on disposal methods; proper segregation can enhance recycling potential.
Local Problem: High variability in waste segregation and excessive linen consumption in the burn and polytrauma ICU.
Front Mol Biosci
August 2025
Department of Environmental Science, University of Arizona, Tucson, AZ, United States.
Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.
Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.
J Vitreoretin Dis
September 2025
Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada.
To quantify the environmental impact of pars plana vitrectomy (PPV), pneumatic retinopexy, and scleral buckle procedures used in rhegmatogenous retinal detachment (RRD) repair. We conducted a life cycle assessment of PPV, pneumatic retinopexy, and scleral buckle procedures. The primary outcome measure was the greenhouse gas emissions associated with each procedure measured in carbon dioxide equivalents.
View Article and Find Full Text PDF