SERS Approach to Probe the Adsorption Process of Trace Volatile Benzaldehyde on Layered Double Hydroxide Material.

Anal Chem

CAS Key Laboratory of High Magnetic Field and Ion Beam Biology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The study of the physicochemical process of volatile organic compound (VOC) adsorption on porous materials is significant for design and screening of adsorbent materials and treatment of VOCs. Traditional measurement methods for studying the adsorption process require lots of adsorbates and adsorbents and are time-consuming. We proposed a facile strategy to study the adsorption process of trace gaseous aldehydes on layered double hydroxide (LDH) using surface-enhanced Raman spectroscopy (SERS). We prepared a composite of Ag nanocubes@hollow Co-Ni LDH (AgNCs@Co-Ni LDH) with a strong adsorption capability and high SERS sensitivity. The adsorption properties of LDH for benzaldehyde in terms of general kinetics and isotherms were investigated. The kinetic adsorption process could be fitted better by the pseudo-first-order kinetics with a higher correlation coefficient than by the pseudo-second-order model, and the adsorption rate of 0.0308 min was obtained from the fitting curve. The isotherm adsorption fits the Langmuir isotherm model, and its adsorption constant is 6.25 × 10 L/mol. Taking advantage of the excellent adsorptive performance and SERS activity, the AgNCs@Co-Ni LDH composite can be used as an effective SERS probe to detect gaseous aldehydes, and it shows a linear dynamic range (5-100 ppb) with a limit of detection reaching 1.83 ppb for benzaldehyde, better than that achieved by previous studies. Therefore, this work has not only established a new measurement method for probing the adsorption process with extremely low consumption of both adsorbates and adsorbents, but also may lay the groundwork for the construction of rapid and ultra-sensitive SERS sensors for probing VOCs in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c00958DOI Listing

Publication Analysis

Top Keywords

adsorption process
20
adsorption
11
process trace
8
layered double
8
double hydroxide
8
adsorbates adsorbents
8
gaseous aldehydes
8
agncs@co-ni ldh
8
model adsorption
8
sers
6

Similar Publications

Rapid Removal of Azo Cationic Dyes Using a Cu(II) Hydrogen-Π-Bonded Organic Framework and Its Derived Oxide: A Combined Adsorption and Photocatalysis Study.

Langmuir

September 2025

Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.

Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).

View Article and Find Full Text PDF

Towards durable photocatalytic seawater splitting: design strategies and challenges.

Chem Commun (Camb)

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070

Photocatalytic seawater splitting (PSWS), which utilizes abundant solar and ocean resources, is one of the most promising technologies for sustainable hydrogen production. However, the complex composition of seawater significantly limits the durability and activity of photocatalysts. In this review, we first identify the primary factors that contribute to photocatalyst deactivation during PSWS, including chloride induced corrosion and loss of active sites, and light shielding caused by precipitation of metal cation salts.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

Jasmine tea: unveiling the secrets of processing, flavor characteristics, and potential health benefits.

Crit Rev Food Sci Nutr

September 2025

Key Laboratory of Tea Science of Ministry of Education and Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha, China.

Jasmine tea, a further processing tea made by scenting green, black, oolong, or other tea with jasmine flowers, is widely appreciated worldwide for its fragrant aroma, refreshing taste, and beneficial health effects. The production of jasmine tea is a meticulous and complex process that involves chemical reactions, physical adsorption, and flavor interaction effects at the sensory level between jasmine and tea. This paper provides a comprehensive review of the research on the processing technology, characteristic aroma formation, nonvolatile compounds, and health benefits of jasmine tea.

View Article and Find Full Text PDF

Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.

View Article and Find Full Text PDF