Comparative Analysis of the Intermolt and Postmolt Hepatopancreas Transcriptomes Provides Insight into the Mechanisms of Molting Process.

Life (Basel)

Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the present study, we used RNA-Seq to investigate the expression changes in the transcriptomes of two molting stages (postmolt (M) and intermolt (NM)) of the red swamp crayfish and identified differentially expressed genes. The transcriptomes of the two molting stages were de novo assembled into 139,100 unigenes with a mean length of 675.59 bp. The results were searched against the NCBI, NR, KEGG, Swissprot, and KOG databases, to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. Furthermore, using the DESeq R package, differentially expressed genes were evaluated. The analysis revealed that 2347 genes were significantly ( > 0.05) differentially expressed in the two molting stages. Several genes and other factors involved in several molecular events critical for the molting process, such as energy requirements, hormonal regulation, immune response, and exoskeleton formation were identified and evaluated by correlation and KEGG analysis. The expression profiles of transcripts detected via RNA-Seq were validated by real-time PCR assay of eight genes. The information presented here provides a transient view of the hepatopancreas transcripts available in the postmolt and intermolt stage of crayfish, hormonal regulation, immune response, and skeletal-related activities during the postmolt stage and the intermolt stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228513PMC
http://dx.doi.org/10.3390/life11060480DOI Listing

Publication Analysis

Top Keywords

molting stages
12
differentially expressed
12
molting process
8
transcriptomes molting
8
postmolt intermolt
8
expressed genes
8
hormonal regulation
8
regulation immune
8
immune response
8
intermolt stage
8

Similar Publications

BmeIF4E2 promotes AcMNPV infection in the silkworm, Bombyx mori, by direct interaction.

Pestic Biochem Physiol

November 2025

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Inst

The molecular mechanism of baculovirus infection is the basis of baculovirus wide application. Identifying and elucidating the functional genes of virus replication is the focus of research. Eukaryotic initiation factor 4E (eIF4E) is a key component of the translation initiation process to synthesize proteins required for replication.

View Article and Find Full Text PDF

Overexpression of G protein-coupled receptors (GPCRs) contributing to lambda-cyhalothrin resistance in Cydia pomonella.

Pestic Biochem Physiol

November 2025

College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, 11

G protein-coupled receptors (GPCRs) constitute a diverse and crucial family of membrane receptors, regulating a wide array of physiological processes. Although the involvement of GPCR signaling pathways in modulating key genes associated with insecticide resistance has been documented in various insect species, the molecular mechanisms underlying GPCR-mediated resistance in Cydia pomonella remain largely unknown. To elucidate the molecular basis of lambda-cyhalothrin (LCT) resistance in C.

View Article and Find Full Text PDF

The LIM domain protein LmFHL2 is required for nymph-adult metamorphosis of Locusta migratoria.

Pestic Biochem Physiol

November 2025

Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China. Electronic address:

The four-and-a-half LIM domain protein 2 (FHL2) is a conserved transcriptional co-regulator critical for vertebrate development and metabolism, yet its roles in arthropods remain poorly understood. Here, we report the functional characterization of LmFHL2 in the migratory locust Locusta migratoria, a devastating pest reliant on precise molting cycles for growth and swarming. Phylogenetic and expression analyses revealed high conservation of LmFHL2 across insects, with predominant expression in integument and gut tissues.

View Article and Find Full Text PDF

Appendage autotomy frequently occurs during the cultivation of , which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in , this study presents a comparative transcriptome analysis on samples from different stages of appendage regeneration in individuals of the same family of . A total of 6460 differentially expressed genes (DEGs) were identified between the samples collected at 0 h post-autotomy (D0) and those collected at 18 h post-autotomy (D18h).

View Article and Find Full Text PDF

Whole-genome identification of SOD gene family revealed the expansion of SOD in Chinese mitten crab, Eriocheir sinensis.

Comp Biochem Physiol Part D Genomics Proteomics

August 2025

Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources Certified by the Ministry of Agriculture and Rural Affairs of China, Shanghai Oc

Superoxide dismutase (SOD) genes are essential components of the antioxidant defense system in crustacean. However, SOD genes have not been identified in Chinese mitten crab (Eriocheir sinensis). In this study, 6 SOD genes including 5 SOD1 and 1 SOD2 genes were identified through a comparative analysis in E.

View Article and Find Full Text PDF