Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chrysin (CHR), a flavone found in multiple vegetables, fruits and mushrooms has been explored so far as a neurotropic, anti-inflammatory and anti-cancer biomolecule. Despite the stated therapeutic potential, low solubility and bioavailability limit its therapeutic benefit. To circumvent these drawbacks, development of chrysin liposomes (CLPs) is reported in the present investigation. The CLPs were developed by electrostatic deposition assisted film hydration method using chitosan/lecithin to protect chrysin in the nano-lipoidal shell. Developed CLPs were extensively characterized by DSC, XPRD, FE-SEM, TEM, particle size, polydispersity index, zeta potential, percent drug loading and encapsulation efficiency. These CLPs were further characterized by dissolution, bioavailability, anticancer and stability study. Suitable particle size, PDI and ZP implying stabilization of developed CLPs. The % DL and % EE was found to be 3.56 ± 0.13 and 90.5 ± 1.49 respectively. DSC and PXRD study revealed amorphous transition of CHR, which may help to increase its solubility and dissolution profile. pharmacokinetic study demonstrated more than 5-fold increase in relative bioavailability of CLPs. The in silico molecular docking study results demonstrated the electrostatic interaction between two polymers. The present study suggests that chitosan could protect and encapsulate chrysin which eventually enhances its cytotoxicity as well as bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2021.1934873DOI Listing

Publication Analysis

Top Keywords

electrostatic deposition
8
deposition assisted
8
chrysin liposomes
8
developed clps
8
particle size
8
study demonstrated
8
clps
6
chrysin
5
study
5
assisted preparation
4

Similar Publications

Construction of environmentally friendly multifunctional core-shell flame retardant and its application in flame retardant polylactic acid.

Int J Biol Macromol

September 2025

College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China.

The flammability and poor ultraviolet (UV) aging resistance of polylactic acid (PLA) limit its applications outdoors and in fields requiring flame retardancy. To address these limitations, this study designed ammonium polyphosphate (APP) as the core, the biopolymer chitosan (CS) as the inner shell, and lignin (LK) as the outer shell. CS and LK are deposited on the surface of APP via electrostatic interaction in the aqueous phase to prepare a core-shell structure flame retardant APP@CS@LK with anti-UV aging properties.

View Article and Find Full Text PDF

Systemic amyloidosis is a complex disorder, making early and accurate diagnosis challenging. The most common types are associated with misfolded transthyretin or immunoglobulin light chains, where cardiac and renal amyloidosis portend the worst prognosis. Peptide p5+14 can bind all types of amyloid via multivalent electrostatic interactions.

View Article and Find Full Text PDF

Influence of anionic surfactants on coacervation with cationic guar gum for hair care applications.

Int J Cosmet Sci

September 2025

Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, Puebla, Mexico.

Objective: To assess the impact of anionic surfactants on the formation of coacervates with cationic guar gum and their subsequent effects on hair care.

Methods: Coacervates were prepared using ionic precipitation techniques involving four anionic surfactants: sodium lauryl sulfate (SLS), sodium lauroyl sarcosinate (SNL), sodium lauryl sulfoacetate (SLSA), sodium cocoyl isethionate (SCI) and cationic guar gum. Viscosity, spreadability and stickiness sensory analysis were conducted with a panel of volunteers.

View Article and Find Full Text PDF

In-Situ hydrothermal growth of gallic acid-derived MOF on electrospun nanofibers for simultaneous oil and heavy metal removal.

J Hazard Mater

September 2025

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Provi

The increasing discharge of complex wastewater, which poses a significant risk to the environment and health, requires the development of an efficient and versatile treatment technology. In this study, we present a more environmentally friendly bifunctional membrane made by in-situ hydrothermal growth of metal-organic frameworks (MOFs) on electrospun nanofibers that can be used for the simultaneous removal of emulsified oils and heavy metal ions. The electrostatically spun fiber substrate consisting of polyacrylonitrile (PAN) and polyimide (PI) provided a high surface scaffold for the uniform deposition of gallic acid biobased MOFs, which ensured highly efficient adsorption and filtration properties as well as the advantage of facilitating secondary recycling.

View Article and Find Full Text PDF

2D materials have emerged as promising candidates for next-generation field-effect transistors (FETs) owing to the atomically thin geometry and excellent electrostatic gate control. Here, double-gate vertical sidewall FETs based on chemical vapor deposition-grown monolayer WS are demonstrated and, for the first time, report vertical multi-channel nanosheet FETs (NSFETs). By implementing a dual-step sidewall profile, steep SiO surfaces are obtained, which enabled seamless WS adhesion and contributed to enhanced device yield.

View Article and Find Full Text PDF