Publications by authors named "Prashant K Deshmukh"

Designing of fluorescent materials in biomedical sciences is gaining attention due to unique characteristics like imaging driven by diagnosis and treatment. The exploration of fluorescent materials from green sources with highlights its application arena in cancer theranostic gained significant attention of oncology researchers. Outwards to the bioimaging techniques, fluorescent graphene quantum dots (fGQDs) grasp a potential place in biomedical research.

View Article and Find Full Text PDF

The work being presented now combines severe gradient boosting with Shapley values, a thriving merger within the field of explainable artificial intelligence. We also use a genetic algorithm to analyse the HDAC1 inhibitory activity of a broad pool of 1274 molecules experimentally reported for HDAC1 inhibition. We conduct this analysis to ascertain the HDAC1 inhibitory activity of these molecules.

View Article and Find Full Text PDF

The discovery of branched molecules like dextrin by Schardinger in 1903 marked the inception of cyclodextrin (CD) utilization, catalyzing its journey from laboratory experimentation to widespread commercialization within the pharmaceutical industry. CD, a cyclic oligosaccharide containing glucopyranose units, acts as a versatile guest molecule, forming inclusion complexes (ICs) with various host molecules. Computational studies have become instrumental in elucidating the intricate interactions between β-CD and guest molecules, enabling the prediction of binding energy, forces, affinity, and complex stability.

View Article and Find Full Text PDF

The aim of research is to enhance the solubility of crystalline gefitinib (GF), a poorly water-soluble drug, by developing drug delivery systems using chitosan oligosaccharide (COS) particle engineering. Fabrication utilizes ionic gelation followed by spray drying. The preliminary evaluations such as Uv-Vis, FTIR, DSC followed by advanced techniques like SEM and invitro drug release characteristics was performed along with solubility study.

View Article and Find Full Text PDF

Background: Estimation of the drug and development of the method is a critical aspect of formulation development and a critical factor for analytical scientists. Gefitinib is a poorly soluble anticancer drug.

Objective: The present research focuses on the topic of the development of innovative quality by design methods for the estimation of gefitinib (GF) from bulk, pharmaceutical tablet formulation, and complex nanoformulations.

View Article and Find Full Text PDF

A major global health risk has been witnessed with the development of drug-resistant bacteria and multidrug-resistant pathogens linked to significant mortality. Coumarins are heterocyclic compounds belonging to the benzophenone class enriched in different plants. Coumarins and their derivatives have a wide range of biological activity, including antibacterial, anticoagulant, antioxidant, anti-inflammatory, antiviral, antitumour, and enzyme inhibitory effects.

View Article and Find Full Text PDF

Chrysin (CHR), a flavone found in multiple vegetables, fruits and mushrooms has been explored so far as a neurotropic, anti-inflammatory and anti-cancer biomolecule. Despite the stated therapeutic potential, low solubility and bioavailability limit its therapeutic benefit. To circumvent these drawbacks, development of chrysin liposomes (CLPs) is reported in the present investigation.

View Article and Find Full Text PDF
Article Synopsis
  • - Black phosphorus (BP) is a new two-dimensional material being explored in biomedicine due to its unique properties, making it suitable for applications in optoelectronics, bioimaging, and 3D printing.
  • - The review highlights various synthetic methods, structural properties, and characterization techniques of BP, including Raman spectroscopy, which are crucial for understanding its potential in drug delivery and cancer therapy.
  • - The text discusses the multifunctional use of BP and BP-based materials in medical applications, particularly focusing on their roles in therapy and imaging for cancer treatment through methods like photoacoustic and fluorescence imaging.
View Article and Find Full Text PDF

Graphene, graphene oxide (GO) and graphene quantum dots (GQDs) are expected to play a vital role in the diagnosis of severe ailments. Computer-based simulation approaches are helpful for understanding theoretical tools prior to experimental investigation. These theoretical tools still have a high computational requirement.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs), impressive materials with enormous future potential, are reviewed from their inception, including different precursors. Considering the increasing burden of industrial and ecological bio-waste, there is an urgency to develop techniques which will convert biowaste into active moieties of interest. Amongst the various materials explored, we selectively highlight the use of potential carbon containing bioprecursors (e.

View Article and Find Full Text PDF

The major objective of the present investigation was to assess the targeting potential of a designed system for breast cancer at metastatic phases with imaging ability. In a nutshell, we have developed surface-engineered graphene oxide (GO) nanosheets by covalent linking with amine-functionalized iron oxide nanoparticles (IONPs) (GOIOIs). Gefitinib (Gf) was selected as a model drug and entrapped in between exfoliated GO sheets (GOIGF) via π-π* stacking before functionalization with IONPs.

View Article and Find Full Text PDF

Surface plasmon resonance (SPR) offers exceptional advantages such as label-free, in-situ and real-time measurement ability that facilitates the study of molecular or chemical binding events. Besides, SPR lacks in the detection of various binding events, particularly involving low molecular weight molecules. This drawback ultimately resulted in the development of several sensitivity enhancement methodologies and their application in the various area.

View Article and Find Full Text PDF

Present investigation deals with, tacrolimus eluting, self-expandable, biodegradable stent fabricated by solvent casting method. The design was based on shape memory polymers, which possess the ability to memorize temporary shape that can substantially differ from their initial permanent shape. A set of biodegradable polymers blend was used such as poly-lactic acid (PLA) and poly-l-glycolic acid (PLGA) to study the shape memory effect of polymer.

View Article and Find Full Text PDF

The present investigation deals with synthesis of graphene oxide (GO) and fabrication of GO-based hybrid nanocomposites (Ncs). Synthesized GO and Ncs were primarily confirmed by UV visible and Fourier transform infrared (FT-IR) spectroscopy. Fabricated Ncs showed potential antimicrobial activity against Gram-positive and Gram-negative bacterial strains.

View Article and Find Full Text PDF

The present work deals with the design and process optimization for preparation of lactoferrin nanoparticles as carrier for delivery of curcumin (CLf-NPs) using quality by design (QbD) approach. Desolvation technique was selected for preparation of Lf-NPs. The concept of QbD was followed in stepwise manner including risk analysis FMEA methodology.

View Article and Find Full Text PDF

The natural stilbenoids combretastatin A-4 (CA4) and combretastatin A-1 (CA1) are potent antitubulin agents demonstrating antimitotic activity as well as tumor vascular disruption property. Due to structural simplicity and potent cytotoxicity of CA4 and CA1, they are considered as promising leads for the development of potent anticancer agents. In fact, scientific fraternity is motivated to synthesize several derivatives of CA4 and CA1 as novel therapeutic agents.

View Article and Find Full Text PDF

In the present investigation, curcumin loaded magnetically active frustules have been reported. The diatoms were cultured and frustules were obtained by chemical and thermal processes. The frustules were rendered magnetically active by incorporation of iron oxide nanoparticle using two different methods involving ferrofluid (CMDM-F) and in situ synthesis (CMDM-I) of iron oxide nanoparticle.

View Article and Find Full Text PDF

Present invention relates to design of nanostructured lipid carriers (NLC) to augment oral bioavailability of Carvedilol (CAR). In this attempt, formulations of CAR-NLCs were prepared with glyceryl-monostearate (GMS) as a lipid, poloxamer 188 as a surfactant and tween 80 as a co-surfactant using high pressure homogenizer by 2(3) factorial design approach. Formed CAR-NLCs were assessed for various performance parameters.

View Article and Find Full Text PDF

Nanoarchitectonics has gained remarkable importance due to the fabrication of various recent nanostructures with the capability of being used in biomedical science, particularly in cancer diagnosis and treatment. These nanosized structures possess unique physical and optical properties that can be exploited for cancer therapeutics, and so nanoarchitectonics is popularly known as nanomedicine. The goal of this review is to discuss the latest findings in nanostructures research including nanocrystals, nanotubes, nanoshells, nanopillars, nanoballs, nanoflowers, nanorods, nanocontainers, nanobelts, nanocages, nanodiscs, nanodots, nanoprisms, nanoplates, nanorings, nanocubes, nanobranches, nanospheres, nanorattles, nanostars, nanotrees, nanowires, nanowalls, nanodiamonds, nanosheets, layered nanostructures, quantum dots, mesoporous nanostructures etc.

View Article and Find Full Text PDF

We report the development of Layer-by-Layer (LbL) polyelectrolyte self-assembled nanocrystalline drug-delivery platform using two experimental factors, namely the number of coatings and temperature during deposition with three varying levels. The optimized formulation (Fopt) was assessed for zeta potential and particle size using Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM). Charge reversal along with an increase in particle size confirmed coating of polyelectrolyte on drug nanocrystals.

View Article and Find Full Text PDF

The present work reports a simple one step synthesis of nanoscale graphene oxide magnetic composites (GO-IO) using ferrofluid (GO-IOF). The obtained GO-IO were compared with GO-IO obtained from in situ (GO-IOI) methods. Anastrozole (ANS) was loaded on the GO-IOI and GO-IOF via simple stirring method to form GO-IOA and GO-IOFA respectively.

View Article and Find Full Text PDF

In the present investigation, a quality by design (QbD) strategy was successfully applied to the fabrication of chitosan-coated nanoliposomes (CH-NLPs) encapsulating a hydrophilic drug. The effects of the processing variables on the particle size, encapsulation efficiency (%EE) and coating efficiency (%CE) of CH-NLPs (prepared using a modified ethanol injection method) were investigated. The concentrations of lipid, cholesterol, drug and chitosan; stirring speed, sonication time; organic:aqueous phase ratio; and temperature were identified as the key factors after risk analysis for conducting a screening design study.

View Article and Find Full Text PDF

Monoamine oxidase (MAO) enzyme inhibition is a crucial target for the management of depression and Alzheimer disease and inhibitors of MAO are the most important drugs for their management. Coumarins are a large family of compounds, of natural and synthetic origin, that exhibit a variety of pharmacological activities, including MAO inhibition. The current review highlights the design and synthetic methods of coumarin derivatives as well as coumarins obtained from plant source as MAO inhibitors for treatment of depression and Alzheimer disease with salient finding related to structure-activity relationship.

View Article and Find Full Text PDF

The aim of the proposed research work was to develop a novel dual-compartment capsule (NDCC) with polymeric disc for gastroretentive dosage form, which will ultimately result in better solubility and bioavailability of Ofloxacin. Floating ring caps were formulated by using different natural polymers, separating ring band and swellable polymer located at the bottom of capsule. Formulated ring caps were assessed for coating thickness, In vitro buoyancy, In vitro drug release, release kinetics and stability studies.

View Article and Find Full Text PDF

Stimuli-sensitive layer-by-layer (LbL) self-assembly systems have generated much interest among researchers worldwide due to the simplicity of the process by which they are produced and their numerous applications in drug delivery. LbL self-assembly systems involve simple alternative adsorption of oppositely charged polyelectrolytes on core materials and are thus considered to be promising tools for drug delivery and biosensing. Here, we discuss the latest findings from research into LbL systems, with special emphasis on drug delivery systems.

View Article and Find Full Text PDF