Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Designing of fluorescent materials in biomedical sciences is gaining attention due to unique characteristics like imaging driven by diagnosis and treatment. The exploration of fluorescent materials from green sources with highlights its application arena in cancer theranostic gained significant attention of oncology researchers. Outwards to the bioimaging techniques, fluorescent graphene quantum dots (fGQDs) grasp a potential place in biomedical research. Additionally, fGQDs have tuneable surface characteristics with high fluorescence, high loading and permeation capability. The present investigation explored the green synthesis of fGQDs using star anise fruit as precursor followed by surface decorated hyaluronic acid (HA) to form conjugated HA - GQD. The advance spectral characterization was used to confirm the synthesis of fGQDs and HA-GQD. The emission at 338 nm with excitation at 576 nm promise strong fluorescence with quantum yield of 16.52%. The conjugated HA-GQDs shows prominent bioimaging capability and lower cytotoxic potential at concentration less than 40 µg/ml. While cell inhibition against MCF-7 was dramatically increases at concentration above 100 µg/mL suitable to promote synergistic inhibition with other anticancer agents. This work demonstrates a sustainable route for developing multifunctional nanomaterials with promising application in cancer theranostics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-025-04388-7DOI Listing

Publication Analysis

Top Keywords

fluorescent graphene
8
graphene quantum
8
quantum dots
8
cancer theranostics
8
fluorescent materials
8
synthesis fgqds
8
green-synthesized hyaluronic
4
hyaluronic acid-conjugated
4
fluorescent
4
acid-conjugated fluorescent
4

Similar Publications

Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.

View Article and Find Full Text PDF

An aptasensor-based fluorescent signal amplification strategy for highly sensitive detection of mycotoxins.

Anal Methods

September 2025

Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.

View Article and Find Full Text PDF

B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.

View Article and Find Full Text PDF

A mannose-functionalized carbon dot and boronic acid-graphene oxide nanocomposite fluorescent probe for detection.

Anal Methods

September 2025

State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.

Current detection methods for often suffer from lengthy procedures, significant technical limitations, high probe costs, and poor long-term storage stability. Herein, an "on-off-on" fluorescent probe is developed based on mannose-lectin recognition for the rapid and quantitative detection of . The probe utilizes mannose-grafted carbon dots (g-CDs-M), which specifically recognize through interaction with lectins on its surface.

View Article and Find Full Text PDF

Synthesis of Polymer Nanohybrids for Glycerol Sensing, Fluorometric Viscosity Detection, and Metal-Free Electrocatalytic Glycerol Oxidation.

Langmuir

September 2025

Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.

This research provides a constructive approach for developing high-performance polymer nanohybrids toward enhancing optoelectronic properties, fluorogenic viscosity sensing, and metal-free electrocatalytic oxidation of glycerol to value-added organic(s). Herein, reduced graphene oxide (RGO) and mildly oxidized RGO (MRGO) are strategically combined with fluorescent electroactive polymers (FEPs) to develop a promising sustainable metal-free electrocatalytic system suitable for amplifying opto-electrochemical properties, multiplatform sensing capacity, and electrocatalytic efficiency. The optimized polymeric counterpart (FEP2) promotes dual-state emission in the supramolecular network of RGO-/MRGO-incorporated fluorescent electroactive hybrid polymers (RFEHPs/MFEHPs) through physicochemically confined atypical electron-rich -C(═O)NH-/-C(═O)O-/-SOH fluorophores of (hydroxyethyl)methacrylate and 2-acrylamido-2-methylpropane-1-sulfonic acid monomers.

View Article and Find Full Text PDF