98%
921
2 minutes
20
RNA-binding proteins (RBPs) have been shown to be dysregulated in cancer transcription and translation, but few studies have investigated their mechanism of action in soft tissue sarcoma (STS). Here, The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to identify differentially expressed RBPs in STS and normal tissues. Through a series of biological information analyses, 329 differentially expressed RBPs were identified. Functional enrichment analysis showed that differentially expressed RBPs were mainly involved in RNA transport, RNA splicing, mRNA monitoring pathways, ribosome biogenesis and translation regulation. Through Cox regression analyses, 9 RBPs (BYSL, IGF2BP3, DNMT3B, TERT, CD3EAP, SRSF12, TLR7, TRIM21 and MEX3A) were all up-regulated in STS as prognosis-related genes, and a prognostic model was established. The model calculated a risk score based on the expression of 9 hub RBPs. The risk score could be used for risk stratification of patients and had a high prognostic value based on the receiver operating characteristic (ROC) curve. We also established a nomogram containing risk scores and 9 key RBPs to predict the 1-year, 3-year, and 5-year survival rates of patients in STS. Afterwards, methylation analysis showed significant changes in the methylation degree of BYSL, CD3EAP and MEX2A. Furthermore, the expression of 9 hub RBPs was closely related to immune infiltration rather than tumor purity. Based on the above studies, these findings may provide new insights into the pathogenesis of STS and will provide candidate biomarkers for the prognosis of STS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138553 | PMC |
http://dx.doi.org/10.3389/fonc.2021.633024 | DOI Listing |
FASEB J
September 2025
Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.
View Article and Find Full Text PDFISME J
September 2025
Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation.
View Article and Find Full Text PDFBackground: The goal was to explore the impact of the NR1D1 gene on the occurrence, development, and prognosis of colorectal cancer (CRC) using bioinformatics approaches.
Methods: CRC transcriptomic and clinical data from TCGA were analyzed to compare NR1D1 expression in tumors and various clinical stages. Survival differences between high and low NR1D1 expression groups were assessed using the R survival package.
Background: The lncRNA-miRNA-mRNA regulatory network is recognized for its significant role in cardiovascular diseases, yet its involvement in in-stent restenosis (ISR) remains unexplored. Our study aimed to investigate how this regulatory network influences ISR occurrence and development by modulating inflammation and immunity.
Methods: By utilizing data extracted from the Gene Expression Omnibus (GEO) database, we constructed the lncRNA-miRNA-mRNA regulatory network specific to ISR.
Gen Physiol Biophys
September 2025
The Second Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.
View Article and Find Full Text PDF