Determinants of trophic cascade strength in freshwater ecosystems: a global analysis.

Ecology

Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Top-down cascade effects are among the most important mechanisms underlying community structure and abundance dynamics in aquatic and terrestrial ecosystems worldwide. A current challenge is understanding the factors controlling trophic cascade strength under global environmental changes. Here, we synthesized 161 global sites to analyze how multiple factors influence consumer-resource interactions with fish in freshwater ecosystems. Fish have a profound negative effect on zooplankton and water clarity but positive effects on primary producers and water nutrients. Furthermore, fish trophic levels can modify the strength of trophic cascades, but an even number of food chain length does not have a negative effect on primary producers in real ecosystems. Eutrophication, warming, and predator abundance strengthen the trophic cascade effects on phytoplankton, suggesting that top-down control will be increasingly important under future global environmental changes. We found no influence or even an increasing trophic cascade strength (e.g., phytoplankton) with increasing latitude, which does not support the widespread view that the trophic cascade strength increases closer to the equator. With increasing temporal and spatial scales, the experimental duration has an accumulative effect, whereas the experimental size is not associated with the trophic cascade strength. Taken together, eutrophication, warming, temporal scale, and predator trophic level and abundance are pivotal to understanding the impacts of multiple environmental factors on the trophic cascade strength. Future studies should stress the possible synergistic effect of multiple factors on the food web structure and dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3370DOI Listing

Publication Analysis

Top Keywords

trophic cascade
28
cascade strength
24
trophic
9
cascade
8
freshwater ecosystems
8
cascade effects
8
global environmental
8
environmental changes
8
multiple factors
8
primary producers
8

Similar Publications

Evaluating the contribution of individual variation in parasite-mediated anorexia to trophic cascades.

Ecology

September 2025

Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA.

Recent evidence suggests that parasite-mediated reductions in food intake (i.e., anorexia) in herbivores can trigger trophic cascades that increase producer biomass.

View Article and Find Full Text PDF

Body sizes of species determining the success of biological control in a three-level food chain.

Sci Rep

September 2025

Laboratório de Inteligência Artificial, Robótica e Cibernética (LIARC), Instituto Militar de Engenharia (IME), Praça Gen. Tibúrcio, 80, Urca, Rio de Janeiro, RJ, 22290-270, Brazil.

Biological control in plant-insect systems represents a fundamental challenge in theoretical ecology, particularly within agricultural systems. This challenge is amplified by climate change, which, through increasing temperatures, has induced variations in insect body size, altering their ecological interactions and, consequently, their abundance. Although allometric relationships provide a static description of the relationship between body size, metabolism, and population density, dynamic models are needed to adequately simulate agroecological systems.

View Article and Find Full Text PDF

Ocean acidification (OA) due to anthropogenic CO2 emissions has significantly altered ocean chemistry since the industrial era. Ocean alkalinity enhancement (OAE) is an innovative strategy to mitigate excess CO, with ocean liming (OL) serving as a potential carbon dioxide removal (CDR) method, through the spreading of Ca(OH) (slaked lime) at the ocean surface. This study examined the ecological effects of OL on a natural zooplankton community from the ultraoligotrophic Eastern Mediterranean Sea during a 14-day mesocosm experiment conducted in spring-summer.

View Article and Find Full Text PDF

Macroinvertebrates are a crucial part of aquatic ecosystems and significantly contribute to the maintenance of their health and stability. Our aims were to explore spatio-temporal patterns in macroinvertebrate communities and evaluate the ecological health of various parts of the Poyang Lake Basin during the early stage of a fishing ban. We collected samples using a Peterson grab sampler and conducted ecological evaluations using the B-IBI index.

View Article and Find Full Text PDF

Examining spillover between habitat boundaries offers a key opportunity to understand how neighbouring habitats may affect each other. Although extensively studied, ecological responses at forest-grassland edges are variable across trophic levels and their underlying interactions. Thus, tackling the subject from a multitrophic perspective may yield valuable insights into how energy may flow across forest-grassland edges.

View Article and Find Full Text PDF