Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As promising building blocks for functional materials and devices, metasurfaces have gained widespread attention in recent years due to their unique electromagnetic (EM) properties, as well as subwavelength footprints. However, current designs based on discrete unit cells often suffer from low working efficiencies, narrow operation bandwidths, and fixed EM functionalities. Here, by employing the superior performance of a continuous metasurface, combined with the reconfigurable properties of a phase change material (PCM), a dual-functional meta-grating is proposed in the infrared region, which can achieve a broadband polarization conversion of over 90% when the PCM is in an amorphous state, and a perfect EM absorption larger than 91% when the PCM changes to a crystalline state. Moreover, by arranging the meta-grating to form a quasi-continuous metasurface, subsequent simulations indicated that the designed device exhibited an ultralow specular reflectivity below 10% and a tunable thermal emissivity from 14.5% to 91%. It is believed that the proposed devices with reconfigurable EM responses have great potential in the field of emissivity control and infrared camouflage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123401PMC
http://dx.doi.org/10.3390/ma14092212DOI Listing

Publication Analysis

Top Keywords

broadband polarization
8
polarization conversion
8
perfect absorption
8
reconfigurable continuous
4
continuous meta-grating
4
meta-grating broadband
4
conversion perfect
4
absorption promising
4
promising building
4
building blocks
4

Similar Publications

Dual sulfur sources redox dynamics guided growth of 〈hk1〉-oriented SbS microrods: lattice strain modulation for ultra-low dark current.

J Colloid Interface Sci

September 2025

College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China. Electronic address:

Antimony trisulfide (SbS) has emerged as a promising inorganic semiconductor for optoelectronics due to its distinctive anisotropic crystal structure and suitable bandgap (∼1.7 eV). While hydrothermal synthesis remains challenging for achieving high crystallinity and controlled morphology, we developed an innovative dual‑sulfur precursor strategy utilizing sodium thiosulfate (STS) and thioacetamide (TAA) at a 7:2 M ratio with SbCl.

View Article and Find Full Text PDF

Broadband anisotropic photodetectors show great promise for polarization-sensitive imaging and multispectral optoelectronic systems yet face critical challenges in material anisotropy modulation and broadband sensitivity. Weyl semimetals exhibit giant optical anisotropy and tunable heterojunction band alignment, enabling high-performance anisotropic photodetection. Herein, ultrabroadband PDs based on the NbNiTe (niobium nickel telluride), enabled by antenna integration and heterostructure engineering, achieve high sensitivity from visible to Terahertz (THz).

View Article and Find Full Text PDF

Rational design of an ultra-high-gain MoS phototransistor enabling room-temperature detection of few-photon signals and attomolar-level immunosensing.

Sci Bull (Beijing)

August 2025

Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China. Electronic address:

Determining the number of photons in an incident light pulse at room temperature is the ultimate goal of photodetection. Herein, we report a plasmon-strain-coupled tens of photon level phototransistor by integrating monolayer MoS on top of Au nanowire (NW). Within this structure, Au NW can greatly enhance incident light intensity around MoS, and the large tensile strain can reduce the contact energy barrier between MoS and Au NW, so as to achieve efficient injection of plasmonic hot electrons into MoS.

View Article and Find Full Text PDF

Trans-scale hierarchical metasurfaces for multispectral compatible regulation of lasers, infrared light, and microwaves.

Nanophotonics

August 2025

National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.

Electromagnetic scattering control of optical windows has significant challenges in improving optical transmission and compatibility, especially for multispectral and large-angle incidences, due to material and structure mismatches. This paper presents trans-scale hierarchical metasurfaces (THM) to achieve wide-angle optical transmission enhancement and electromagnetic scattering-compatible regulation in dual-band lasers, and infrared and microwave ranges. THM comprises an ultrafine hollow metal array (UHMA) and a transmission-enhanced micro-nanocone array (TMCA).

View Article and Find Full Text PDF

A highly efficient ultra-broadband and wide-angle plasmon absorber based on nanocavity arrays for solar harvesting.

Nanoscale

September 2025

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

As the demand for renewable energy continues to rise, developing efficient solar energy harvesting technologies has become increasingly important. In this paper, we propose a plasmon absorber utilizing nanocavity arrays to achieve ultra-broadband absorption of solar energy. The results show that the absorber achieves an average absorption rate of 95.

View Article and Find Full Text PDF