Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enabling the cellular delivery and cytosolic bioavailability of functional proteins constitutes a major challenge for the life sciences. Here we demonstrate that thiol-reactive arginine-rich peptide additives can enhance the cellular uptake of protein-CPP conjugates in a non-endocytic mode, even at low micromolar concentration. We show that such thiol- or HaloTag-reactive additives can result in covalently anchored CPPs on the cell surface, which are highly effective at co-delivering protein cargoes. Taking advantage of the thiol reactivity of our most effective CPP additive, we show that Cys-containing proteins can be readily delivered into the cytosol by simple co-addition of a slight excess of this CPP. Furthermore, we demonstrate the application of our 'CPP-additive technique' in the delivery of functional enzymes, nanobodies and full-length immunoglobulin-G antibodies. This new cellular uptake protocol greatly simplifies both the accessibility and efficiency of protein and antibody delivery, with minimal chemical or genetic engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41557-021-00661-xDOI Listing

Publication Analysis

Top Keywords

cellular uptake
12
peptide additives
8
cellular
4
uptake large
4
large biomolecules
4
biomolecules enabled
4
enabled cell-surface-reactive
4
cell-surface-reactive cell-penetrating
4
cell-penetrating peptide
4
additives enabling
4

Similar Publications

Lipid nanoparticles: Composition, formulation, and application.

Mol Ther Methods Clin Dev

June 2025

Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.

Lipid nanoparticles (LNPs) are lead non-viral vectors for delivering nucleic acids. LNPs can efficiently encapsulate nucleic acids, protect them from degradation, enhance cellular uptake and induce endosome escape, which show high transfection efficiency and low immunogenicity. In this review, we first introduce the LNP components, highlighting their critical roles in encapsulation, stability, delivery efficiency, and tissue tropism.

View Article and Find Full Text PDF

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM), a type of diabetes mellitus occurring in pregnant women, increases the risk of birth trauma. Solute carrier family 2 member 4 (SLC2A4) polymorphism is notably associated with GDM susceptibility; however, the mechanism is unknown. In the present study, HTR-8/SVneo cells were treated with high glucose concentrations and transfected with SLC2A4 and Forkhead box O (FoxO)1 to investigate their roles in the insulin (INS) resistance of GDM trophoblast cells.

View Article and Find Full Text PDF

Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.

View Article and Find Full Text PDF

Neuronal insulin signaling is essential for regulating glucose metabolism and cognitive functions in the brain. Disruptions cause neuronal insulin resistance, potentially causing type 2 diabetes (T2D) and Alzheimer's disease (AD). Therefore, we investigated alternative pathways that maintain glucose homeostasis beyond traditional insulin signaling.

View Article and Find Full Text PDF