A dual-channel colorimetric and ratiometric fluorescence chemosensor for detection of Hg ion and its bioimaging applications.

Spectrochim Acta A Mol Biomol Spectrosc

R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National U

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A new colorimetric and ratiometric fluorescence chemosensor 4-((3-(octadecylthio)-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)benzenesulfonamide (4DBS) was synthesized and investigated for the selective detection of Hg in DMSO-HO (9:1, v/v) solution. The chemosensor was efficiently synthesized in two steps via Michael-like addition and nucleophilic substitution reactions. The ratiometric fluorescence turn-on response was obtained towards Hg, and its fluorescence emission peak was red-shifted by 140 nm with an associated color change from light maroon to pale yellow due to the intramolecular charge transfer effect. The formed coordination metal complex was further evaluated by FT-IR, H NMR, and quantum chemical analyses to confirm the binding mechanism. The detection process was sensitive/reversible, and the calculated limit of detection for Hg was 0.451 µM. Furthermore, 4DBS was effectively utilized as a bioimaging agent for detection of Hg in live cells and zebrafish larvae. Additionally, 4DBS showed distinguishing detection of Hg in cancer cells in comparison with normal cells. Thus, 4DBS could be employed as an efficient bioimaging probe for discriminative identification of human cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.119776DOI Listing

Publication Analysis

Top Keywords

ratiometric fluorescence
12
colorimetric ratiometric
8
fluorescence chemosensor
8
cancer cells
8
detection
6
dual-channel colorimetric
4
fluorescence
4
chemosensor detection
4
detection ion
4
ion bioimaging
4

Similar Publications

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Singlet oxygen (O) plays a crucial role in cancer chemotherapy and ROS biology, driving the need for highly specific probes to monitor its dynamics in real time. Herein, we developed the ratiometric fluorescent probe NAP-t-PY, utilizing a 2-pyridone recognition unit. The probe's 1-methyl-3-benzyl-2-pyridone moiety reacts specifically with O [4 + 2] cycloaddition, forming the endoperoxide NAP-t-PY-EP.

View Article and Find Full Text PDF

A ratiometric dual-channel fluorescent probe for selective Zn/Cd sensing: Applications in food quality control, real-time monitoring in living cells, and mice.

Anal Chim Acta

November 2025

State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou, 215600, PR China. Electronic address:

Background: Zinc (Zn) and cadmium (Cd) ions are ubiquitous in industrial and daily life. Despite their critical impact on food safety and human health, current probes face significant limitations in simultaneously detecting both ions in complex food matrices.

Results: Herein, we successfully developed a pyrene-based FRET ratiometric fluorescent probe QP for the highly selective detection of Zn and Cd.

View Article and Find Full Text PDF

A FRET ratiometric fluorescent probe for detection of bisulfite in food: Insights into food quality and preservation.

Anal Chim Acta

November 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China. Electronic address:

Background: Bisulfite (HSO) plays crucial roles in food safety and physiological health. In the food industry, sulfur dioxide (SO) and its derivative bisulfite (HSO) are extensively employed as preservatives and bleaching agents. Nonetheless, overconsumption of bisulfite can present health hazards like asthma and potentially cancer.

View Article and Find Full Text PDF

Background: In the contemporary era of rapid digital advancement, information security is closely associated with our daily life. From personal information to state secrets, all domains are intricately linked with information. Consequently, the significance of information security has garnered growing attention from an ever-increasing number of individuals.

View Article and Find Full Text PDF