98%
921
2 minutes
20
Bisphenol-A (BPA), 17α-ethinylestradiol (EE2), and 4-nonylphenol (4NP) are endocrine-disrupting chemicals (EDCs) that are useful models for studying the potential fate and transport of EDCs in soil and water environments. Two alluvial soils with contrasting physicochemical properties were used as adsorbents for this study. The Zook soil material had more organic matter and clay than the sandy loam Hanlon soil material. Batch equilibrium experiments were performed to generate adsorption isotherms, to determine the adsorption parameters, and to assess desorption hysteresis. Adsorption of BPA to both soils followed an L-type isotherm, and 4NP adsorbed to both Hanlon and Zook soils exhibited S-shape isotherms. EE2 adsorbed to the Zook soil also followed an S-shaped isotherm, but EE2 adsorbed to the Hanlon soil showed an H-type isotherm. Overall, the Sips model fit the data well, with standard errors of prediction generally ≤6%. The adsorption affinity (K ) values were highest for 4NP, and BPA had the lowest hysteresis indices. The data suggest that BPA was most likely adsorbed by soil organic matter via hydrogen bonding involving its two phenolic groups. In contrast, isotherm shape, model affinity indices, lack of desorption, and molecular-scale characteristics led us to infer that 4NP was adsorbed largely by the retention of molecular clusters, perhaps in clay nanopores. Finally, the adsorption of EE2 exhibited different isotherm shapes for the two soils as well as intermediate affinity and desorption indices, suggesting that EE2 molecules could be retained both by soil organic matter and by clay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jeq2.20221 | DOI Listing |
Bioresour Technol
September 2025
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:
Bioclogging from organic accumulation significantly limits efficiency and longevity of constructed wetlands (CWs). In this study, hematite was introduced to enhance the oxidation of organics by dissimilatory iron reduction (DIR). Compared to gravel CWs (G-CWs), hematite CWs (H-CWs) enhanced the removal of COD, ammonium, and phosphate by 12 %, 46 %, and 72 %, while reducing CH and NO emissions by 69 % and 36 %.
View Article and Find Full Text PDFEnviron Res
September 2025
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address: cmm114@mail
Black soldier fly (BSF) organic fertilizer is known to enhance soil fertility and promote plant growth. However, its effects on soil carbon (C) and nitrogen (N) cycling remains unclear. In this study, we established a BSF chicken manure bioconversion system to produce BSF organic fertilizer and investigate its impacts on soil C and N cycling, as well as microbial ecological networks through metagenomic analysis.
View Article and Find Full Text PDFMar Environ Res
September 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:
This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:
Large-scale anaerobic treatment involves a high risk of antibiotic pollution in anaerobically digested (AD) biosolids, which hinders the efficient utilization of farmland AD biosolids. Herein, a process for the in situ removal of antibiotics from AD biosolids using ethylenediaminetetraacetic acid disodium salt dihydrate as the release agent synergized with sodium persulfate oxidation is reported. The developed process was used to remove antibiotics from actual AD biosolids.
View Article and Find Full Text PDFJ Environ Manage
September 2025
College of chemistry and chemical Engineering, Ocean University of China, Qingdao, China. Electronic address:
Tidal estuaries serve as critical zones for biogeochemical connectivity between terrestrial and oceanic ecosystems. With climate change magnifying the impact of flood events on riverine system, dissolved organic matter (DOM) cycling, the largest reactive elemental pool in ecosystems, in tidal estuaries tend to be more complex and remain poorly understood. To address this gap, the response of DOM dynamics to flood events in a typical tidal estuary was explored.
View Article and Find Full Text PDF