Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Due to its important roles in oncogenic signaling, AKT has been subjected to extensive drug discovery efforts leading to small molecule inhibitors investigated in advanced clinical trials. To better understand how these drugs exert their therapeutic effects at the molecular level, we combined chemoproteomic target affinity profiling using kinobeads and phosphoproteomics to analyze the five clinical AKT inhibitors AZD5363 (Capivasertib), GSK2110183 (Afuresertib), GSK690693, Ipatasertib, and MK-2206 in BT-474 breast cancer cells. Kinobead profiling identified between four and 29 nM targets for these compounds and showed that AKT1 and AKT2 were the only common targets. Similarly, measuring the response of the phosphoproteome to the same inhibitors identified ∼1700 regulated phosphorylation sites, 276 of which were perturbed by all five compounds. This analysis expanded the known AKT signaling network by 119 phosphoproteins that may represent direct or indirect targets of AKT. Within this new network, 41 regulated phosphorylation sites harbor the AKT substrate motif, and recombinant kinase assays validated 16 as novel AKT substrates. These included CEP170 and FAM83H, suggesting a regulatory function of AKT in mitosis and cytoskeleton organization. In addition, a specific phosphorylation pattern on the ULK1-FIP200-ATG13-VAPB complex was found to determine the active state of ULK1, leading to elevated autophagy in response to AKT inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.0c00872DOI Listing

Publication Analysis

Top Keywords

akt
9
akt inhibitors
8
regulated phosphorylation
8
phosphorylation sites
8
chemical phosphoproteomics
4
phosphoproteomics sheds
4
sheds light
4
targets
4
light targets
4
targets modes
4

Similar Publications

The role of inflammation in the regulation of acute myeloid leukemia (AML) and stressed hematopoiesis is significant, though the molecular mechanisms are not fully understood. Here, we found that mesenchymal stromal cells (MSCs) had dysregulated expression of the inflammatory cytokine S100A8 in AML. Upregulating S100A8 in MSCs increased the proliferation of AML cells in vitro.

View Article and Find Full Text PDF

Muricholic acid mediates puberty initiation via the hypothalamic TGR5 signaling pathway.

Proc Natl Acad Sci U S A

September 2025

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.

The onset of puberty is increasingly observed at earlier ages in children, especially in girls with obesity, a trend that predisposes them to long-term metabolic and reproductive disorders in adulthood. Bile acids have emerged as pivotal signaling molecules in both metabolic and reproductive disorders, but remain unexplored in the early onset of puberty in children. Herein, we find elevated levels of muricholic acid (MCA) species in the serum of girls with central precocious puberty, which strongly correlate with indices of hypothalamic-pituitary-gonadal axis activation and can reach peak levels during puberty among healthy children.

View Article and Find Full Text PDF

3-O-acetylrubiarbonol B preferentially targets EGFR and MET over rubiarbonol B to inhibit NSCLC cell growth.

PLoS One

September 2025

Department of Biomedicine, Health and Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths, remaining a significant challenge in terms of early detection, effective treatment, and improving patient survival rates. In this study, we investigated the anticancer mechanism of rubiarbonol B (Ru-B) and its derivative 3-O-acetylrubiarbonol B (ARu-B), a pentacyclic terpenoid in gefitinib (GEF)-sensitive and -resistant NSCLC HCC827 cells. Concentration- and time-dependent cytotoxicity was observed for both Ru-B and ARu-B.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF