98%
921
2 minutes
20
The intrinsic electronic properties of donor (D) and acceptor (A) materials in coupling with morphological features dictate the output in organic solar cells (OSCs). New physical properties of intimate eutectic mixing are used in nonfullerene-acceptor-based D-A -A ternary blends to fine-tune the bulk heterojunction thin film morphology as well as their electronic properties. With enhanced thin film crystallinity and improved carrier transport, a significant J amplification is achieved due to the formation of eutectic fibrillar lamellae and reduced defects state density. Material wise, aligned cascading energy levels with much larger driving force, and suppressed recombination channels confirm efficient charge transfer and transport, enabling an improved power conversion efficiency (PCE) of 17.84%. These results reveal the importance of utilizing specific material interactions to control the crystalline habit in blended films to form a well-suited morphology in guiding superior performances, which is of high demand in the next episode of OSC fabrication toward 20% PCE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202007177 | DOI Listing |
Macromol Rapid Commun
September 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.
Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
Metal-organic frameworks (MOFs) are distinguished by their structural diversity, tunable electronic properties, and exceptional performance in various applications. Notably, the electron-donating ability of ligands significantly enhances the ligand-to-metal charge transfer (LMCT) processes within these frameworks, thereby promoting efficient charge migration. Herein, we developed two electron-rich macrocyclic ligands derived from phenothiazine- and phenoxazine-functionalized calix[3]arenes, alongside their corresponding cobalt-coordinated MOFs.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDFTop Curr Chem (Cham)
September 2025
Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
Controlling the size of gold nanoparticles (AuNPs) has been critical in diagnostics, biomolecular sensing, targeted therapy, wastewater treatment, catalysis, and sensing applications. Ultrasmall AuNPs (uAuNPs), with sizes Ranging from 2 to 5 nm, and gold nanoclusters (AuNCs), with sizes less than 2 nm, are often dealt with interchangeably in the literature, making it challenging to review them separately. Although they are grouped in our discussion, their chemical and physical properties differ significantly, partly due to their electronic properties.
View Article and Find Full Text PDFNanoscale
September 2025
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
With the progress of study, MoS has been proven to show excellent properties in electronics and optoelectronics, which promotes the fabrication of future novel integrated circuits and photodetectors. However, highly uniform wafer-scale growth is still in its early stage, especially regarding how to control the precursor and its distribution. Herein, we propose a new method, spraying the Mo precursor, which is proven to fabricate highly uniform 2-inch monolayer MoS wafers.
View Article and Find Full Text PDF